Antimicrobial Activity of Tithonia diversifolia, Elephantopus scaber, and Kigelia africana Against Plant Pathogens
Desi Rejeki,
Suharto,
Hardian Susilo Addy
Issue:
Volume 3, Issue 4, August 2017
Pages:
56-61
Received:
2 July 2017
Accepted:
24 August 2017
Published:
10 October 2017
Abstract: Synthetic pesticides, one among agricultural inputs, have been used and applied to crop production, particularly during plant pathogen attacks. Although promisingly, possible effect that the application of pesticides on agro-ecosystem may have to be concerned to support health of food, consumers and to the environment. Alternatively, exploration of the potential plants that probably have natural antimicrobial compounds is important step to discover natural pesticide as component of plant disease management. Some of plants with low economical value such as Tithonia diversifolia, Elephantopus scaber, and Kigelia africana have been known to have antimicrobial substances and successfully demonstrated against food and human pathogens. These, bring us to study their potency in controlling several plant pathogens of important crops, either fungal such as Phytophthora nicotianae and Rhizoctonia solani, or bacterial pathogens such as Ralstonia solanacearum and Xanthomonas oryzae. Leave extracts of both, T. diversifolia and E. scaber, and fruit extract of K. africana were obtained and concentrated using methanol. Our results showed that all extracts contained flavonoid, tannin, and alkaloid but the amount of the content of each extract was different. Among extracts used in this study, fruit extract of K. africana was known to contain the highest flavonoid and tannin content of 21, 54 μg QE/ml and 28.95 μg GAE/ml, respectively, with low content on alkaloid (3.32 μg AE/ml) compared to other plant extracts. To test it potency as biopesticides, antimicrobial activity against fungal pathogens were evaluated using poisoned food technique method while antimicrobial activity against pathogenic bacteria were evaluated using spot test method. The result showed that extract from K. africana fruit was able to inhibit fungal pathogen R. solani, while extracts of E. scaber and T. diversifolia were have inhibition ability against P. nicotianae. In addition, the E. scaber extract was also able to inhibit bacteria R. solanacearum and X. oryzae. In average, 5 mg/ml of extracts were demonstrated to give the best performance in inhibit plant pathogens.
Abstract: Synthetic pesticides, one among agricultural inputs, have been used and applied to crop production, particularly during plant pathogen attacks. Although promisingly, possible effect that the application of pesticides on agro-ecosystem may have to be concerned to support health of food, consumers and to the environment. Alternatively, exploration of...
Show More
Characterization of Silver Nanoparticles Synthesizing Bacteria and Its Possible Use in Treatment of Multi Drug Resistant Isolate
Manikant Tripathi,
Anil Kumar,
Shailendra Kumar
Issue:
Volume 3, Issue 4, August 2017
Pages:
62-67
Received:
30 September 2017
Accepted:
27 October 2017
Published:
25 November 2017
Abstract: Nanobiotechnology is a promising area to cater human life. Biological methods for the synthesis of silver nanoparticles are relatively cost effective process. It was aimed at synthesizing silver nanoparticles using water and soil borne bacterial isolates, characterization of silver nanoparticles using UV-Vis spectroscopy and Fourier transform infra red (FTIR) spectroscopy and its effect on multi drug resistant bacterial isolate. The biosynthesis of silver nanoparticles was evaluated in both bacterial biomass and culture supernatant of Bacillus, Pseudomonas and Escherichia coli in the presence of 1mM of AgNO3.On the basis of physical appearances of silver nano particles, Pseudomonas sp. was selected for synthesis. The absorbance spectra of reaction mixture of bacterial biomass and supernatant show the strong peak at 420 nm, indicating the presence of silver nanoparticles (AgNPs) using UV-Vis and FTIR spectrophotometry. The influence of synthesized AgNPs was tested against multi drug resistant (MDR) Staphylococcus sp. on Mueller Hinton agar. The multi antibiotics resistant Staphylococcus sp. showed antibiotic sensitivity against the antibiotic discs impregnated with silver nanoparticles. The characteristics of silver nanoparticles revealed its possible use in biomedical field.
Abstract: Nanobiotechnology is a promising area to cater human life. Biological methods for the synthesis of silver nanoparticles are relatively cost effective process. It was aimed at synthesizing silver nanoparticles using water and soil borne bacterial isolates, characterization of silver nanoparticles using UV-Vis spectroscopy and Fourier transform infra...
Show More