In industrial plantations, groundwater is used as a source of drinking water, although it can be affected by contamination from agricultural activities. The aim of our study was to assess the physico-chemical and bacteriological quality of groundwater from industrial plantations in the south of Côte d'Ivoire. The methodological approach consisted of an annual sampling campaign of water supply sources in four (04) plantations from 2016 to 2019 and the analytical approach consisted of determining the various physico-chemical and bacteriological parameters of these different water sources. The physico-chemical analysis used electrochemical and spectrophotometric methods, while the bacteriological analysis was based on the membrane filtration technology. The results showed that the water was characterized by: an average acid pH of 6.09, low mineralization (from 12.83 to 139.29 µS/cm), high iron values ranging from 0.5 to 3.2 mg/L (in 37% of the samples), organic matter ranging from 7.8 to 13.5 mg/L (30% of the samples), and aluminium and ammonium values of 0.3 to 1.1 mg/L and 1.75 to 6.75 mg/L respectively (26% of the samples). Contamination by germs indicative of faecal pollution was also observed in 30% of samples. In conclusion, these waters are of unsatisfactory quality and unfit for consumption. Measures to improve water quality in these plantations should be considered.
Published in | Science Journal of Analytical Chemistry (Volume 13, Issue 1) |
DOI | 10.11648/j.sjac.20251301.14 |
Page(s) | 25-35 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Groundwater, Physico-chemical Parameters, Bacteriological Parameters, Plantations
Parameters | Min | Average ± Standard deviation | Max | WHO standards (2017) |
---|---|---|---|---|
Physico-chemical parameters | ||||
**Colour (UCV) | 15 | 2.66 ± 10.33 | 35 | < 15 |
**Turbidity (NTU) | 0.09 | 5.62 ± 12.16 | 30.4 | < 5 |
Conductivity (µS/cm) | 8.6 | 12.83 ± 64.22 | 15.6 | < 1000 |
Temperature (C°) | 26.4 | 26.5 ± 0.08 | 26.5 | - |
**pH | 4.2 | 5.6 ± 1.23 | 6.4 | 6.5 à 8.5 |
TAS (mg/L) | - | - | - | - |
Chlorides (mg/L) | 30 | 87.5 ± 46.0 | 150 | < 250 |
THD (mg/L) | 40 | 81.12 ± 49.30 | 140 | - |
Nitrates (mg/L) | 0.01 | 0.03 ± 0.04 | 0.09 | < 50 |
Nitrites (mg/L) | 0.01 | 0.01 ± 0 | 0.01 | < 1 |
**Ammonium (mg/L) | 0.04 | 2.7 ± 3.05 | 6.72 | < 1.5 |
**Fluorides (mg/L) | 0.01 | 8.33 ± 21.25 | 48 | < 1.5 |
Manganese (mg/L) | 0.007 | 0.02 ± 0.02 | 0.02 | < 1 |
**Aluminium (mg/L) | 0.22 | 0.56 ± 0.33 | 1.14 | < 0.2 |
Iron total (mg/L) | 0.01 | 0.05 ± 0.02 | 0.06 | < 0.3 |
**Organic matters (mg/L) | 3.3 | 9.6 ± 6.68 | 21 | < 5 |
Bacteriological parameters | ||||
**TC (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
**E. coli (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
**E. faecalis (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
**ASR (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
P. aeruginosa (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
Parameters | Min | Average ± Standard deviation | Max | WHO standards (2017) |
---|---|---|---|---|
Physico-chemical parameters | ||||
**Colour (UCV) | 15 | 34.14 ± 26.12 | 70 | < 15 |
**Turbidity (NTU) | 0.33 | 35.10 ± 67.68 | 182 | < 5 |
Conductivity (µS/cm) | 67.45 | 139.29 ± 64.22 | 259 | < 1000 |
Temperature (C°) | 26.4 | 27.11 ± 0.51 | 27.8 | - |
**pH | 5.8 | 6.4 ±0.43 | 7 | 6.5 à 8.5 |
TAS (mg/L) | 40 | 147.14 ±62.37 | 245 | - |
Chlorides (mg/L) | 2.7 | 14.8 ± 10.65 | 32 | < 250 |
THD (mg/L) | 5 | 103.57 ± 113.42 | 310 | - |
Nitrates (mg/L) | 0.38 | 1.76 ± 1.31 | 3.9 | < 50 |
Nitrites (mg/L) | 0 | 0.078 ± 0.13 | 0.37 | < 1 |
Ammonium (mg/L) | 0.01 | 0.108 ± 0.17 | 0.43 | < 1.5 |
Fluorides (mg/L) | 0.01 | 0.204 ± 0.01 | 0.57 | < 1.5 |
Manganese (mg/L) | 0.005 | 0.037 ± 0.02 | 0.065 | < 1 |
**Aluminium (mg/L) | 0 | 0.07 ± 0.08 | 0.24 | < 0.2 |
**Iron total (mg/L) | 0.05 | 0.97 ± 1.23 | 3.2 | < 0.3 |
**Organic matters (mg/L) | 2.3 | 5.5 ± 1.26 | 12 | < 5 |
Bacteriological parameters | ||||
**TC (UFC/100 mL) | 0 | 4.71 ± 3.4 | 10 | 0 |
**E. coli (UFC/100 mL) | 0 | 0.42 ± 1.13 | 3 | 0 |
**E. faecalis (UFC/100 mL) | 0 | 0.14 ± 0.38 | 1 | 0 |
**ASR (UFC/100 mL) | 0 | 0.14 | 1 | 0 |
**P. aeruginosa (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
Parameters | Min | Average ± Standard deviation | Max | WHO standards (2017) |
---|---|---|---|---|
Physico-chemical parameters | ||||
**Colour (UCV) | 10 | 17.86 ± 10.74 | 40 | < 15 |
**Turbidity (NTU) | 0.15 | 8.2 ± 11.47 | 30.3 | < 5 |
Conductivity (µS/cm) | 63.75 | 105.11 ± 30.52 | 154.5 | < 1000 |
Temperature (C°) | 26.1 | 27.11 ± 0.56 | 27.8 | - |
**pH | 5.7 | 6.2 ±0.41 | 6.9 | 6.5 à 8.5 |
TAS (mg/L) | 5 | 132.86 ± 83.85 | 235 | - |
Chlorides (mg/L) | 3.1 | 13.48 ± 13.74 | 42 | < 250 |
THD (mg/L) | 5 | 33.57 ± 20.35 | 60 | - |
Nitrates (mg/L) | 0.14 | 0.67 ± 0.39 | 1.3 | < 50 |
Nitrites (mg/L) | 0 | 0.028 ± 0.05 | 0.14 | < 1 |
**Ammonium (mg/L) | 0.01 | 0.26 ± 0.66 | 1.75 | < 1.5 |
Fluorides (mg/L) | 0.01 | 0.24 ± 0.01 | 0.75 | < 1.5 |
Manganese (mg/L) | 0 | 0.07 ± 0.14 | 0.4 | < 1 |
Aluminium (mg/L) | 0.01 | 0.045 ± 0.055 | 0.14 | < 0.2 |
**Iron total (mg/L) | 0.01 | 0.4 ± 0.7 | 2.1 | < 0.3 |
Organic matters (mg/L) | 0.78 | 1.56 ± 0.49 | 2 | < 5 |
Bacteriological parameters | ||||
TC (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
E. coli (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
E. faecalis (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
ASR (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
P. aeruginosa (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
Parameters | Min | Average ± Standard deviation | Max | WHO standards (2017) |
---|---|---|---|---|
Physico-chemical parameters | ||||
**Colour (UCV) | 5 | 52.86 ± 122.26 | 330 | < 15 |
Turbidity (NTU) | 0.35 | 1.41 ± 0.94 | 2.57 | < 5 |
Conductivity (µS/cm) | 12.5 | 24.89 ± 11.54 | 45.4 | < 1000 |
Temperature (C°) | 27.4 | 28.4 ± 0.74 | 29.7 | - |
**pH | 5.5 | 6.4 ± 0.56 | 7 | 6.5 à 8.5 |
TAS (mg/L) | 45 | 207.86 ± 100.07 | 350 | - |
Chlorides (mg/L) | 3.1 | 14.81 ± 65.99 | 42 | < 250 |
THD (mg/L) | 5 | 54.28 ± 39.73 | 120 | - |
Nitrates (mg/L) | 0.1 | 0.64 ± 0.66 | 0.97 | < 50 |
Nitrites (mg/L) | 0 | 0.028 ± 0.05 | 0.14 | < 1 |
**Ammonium (mg/L) | 0.01 | 0.61 ±1.28 | 3.5 | < 1.5 |
Fluorides (mg/L) | 0.01 | 0.32 ± 0.01 | 0.84 | < 1.5 |
Manganese (mg/L) | 0.001 | 0.055 ± 0.106 | 0.3 | < 1 |
Aluminium (mg/L) | 0.01 | 0.05 ± 0.034 | 0.09 | < 0.2 |
Iron total (mg/L) | 0.3 | 0.4 ± 1.64 | 2.35 | < 0.3 |
Organic matters (mg/L) | 0.66 | 1.56 ± 1.45 | 4.63 | < 5 |
Bacteriological parameters | ||||
**TC (UFC/100 mL) | 0 | 2.57 ± 3.26 | 7 | 0 |
**E. coli (UFC/100 mL) | 0 | 2.57 ± 3.26 | 7 | 0 |
**E. faecalis (UFC/100 mL) | 0 | 25.14 ± 59.76 | 160 | 0 |
ASR (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
P. aeruginosa (UFC/100 mL) | 0 | 0 ± 0 | 0 | 0 |
% non-compliance of physico-chemical parameters by year | |||||
---|---|---|---|---|---|
Parameters | 2016 | 2017 | 2018 | 2019 | Average |
Colour (UCV) | 33.33 | 42.86 | 42.86 | 14.28 | 33.33 |
Turbidity (NTU) | 16.66 | 42.86 | 42.86 | 0 | 25.60 |
pH | 100 | 42.86 | 71.43 | 42.86 | 64.29 |
Ammonium (mg/L) | 33.33 | 0 | 14.28 | 14.28 | 15.47 |
Fluorides (mg/L) | 16.66 | 42.86 | 0 | 0 | 14.88 |
Aluminium (mg/L) | 100 | 14.28 | 0 | 0 | 28.57 |
Iron total (mg/L) | 0 | 42.86 | 28.57 | 71.43 | 35.72 |
Organic matters (mg/L) | 66.66 | 28.57 | 0 | 0 | 23.81 |
AFNOR | French National Organization for Standardization |
TAS | Total Alkalimetric Strength |
THD | Total Hydrotimetric Degree |
TC | Total Coliforms |
E. coli | Escherichia coli |
E. faecalis | Enterococcus faecalis |
P. aeruginosa | Pseudomonas aeruginosa |
ASR | Anaerobic Sulphite Reducers |
PCA | Principal Component Analysis |
[1] | Harrat N, Achour S. Pollution physico-chimique des eaux de Barrage de la région d’El Tarf. Impact sur la chloration. |
[2] | Baechler L. La bonne gestion de l’eau: un enjeu majeur du développement durable. Eur En Form 2012: 3–21. |
[3] | Yapo RI, Mambo V, Alder AC, Ohou-Yao MJ, Ligban R, Dao D, et al. Caractérisation saisonnière des eaux de puits à usage maraîchère et domestique de Korhogo (Côte d’Ivoire). Int J Biol Chem Sci 2016; 10: 1433. |
[4] | de MARSILY G, Besbes M. Les eaux souterraines, Cairn/Softwin; 2017, p. 25–30. |
[5] |
OMS. (2022) eau potable,
https://www.who.int/fr/news-room/fact-sheets/detail/drinking-water consulté le 20-05-2023. n.d. |
[6] | Kyakimwa Kyalwahi O, Musoki Furaha B, Nyanzereka Mokala S. Évaluation de la qualité bactériologique des eaux de puits de la Commune Mususa en Ville de Butembo 2023. |
[7] | MINISTERE DE L’HYDRAULIQUE. Côte d’Ivoire: 2010. |
[8] | Ernest AK, Nagnin S, Gbombélé S, Théophile L, Solange OM, Pacôme ZS. Groundwater pollution in Africans biggest towns: case of the town of Abidjan (Côte D’ivoire). Eur J Sci Res. |
[9] | Sidoine EB, Brice DKE, Siaka T, Michel KA, Boni N, Kouman K, et al. Etat Phytosanitaire Dans Les Plantations Industrielles De Bananiers Dans La Lutte Contre La Cercosporiose Noire En Côte d’Ivoire. Eur Sci J ESJ 2020; 16. |
[10] | Orou RK, Soro G, Soro DT, Fossou RMN, Onetie OZ, Ahoussi EK, et al. Variation Saisonnière De La Qualité Physico-Chimique Des Eaux Souterraines Des Aquifères d’Altérites Du Département d’Agboville (Sud-Est De La Côte d’Ivoire). Eur Sci J ESJ 2016; 12: 213. |
[11] | Helrich K. Association of Official Analytical Chemists, (1990) Official Methods of Analysis of the Association of Official Analytical Chemists n.d. |
[12] | Ahoussi EK, Keumean NK, Kouassi MA, Koffi BY. Etude des caractéristiques hydrogéochimiques et microbiologiques des eaux de consommation de la zone périurbaine de la ville de Man: cas du village de Kpangouin (Côte d’Ivoire). Int J Biol Chem Sci 2018; 11: 3018. |
[13] | Ahoussi K, Oga Y, Koffi Y, Kouassi A, Soro N, Biemi J. Caractérisation hydrogéochimique et microbiologique des ressources en eau du site d’un Centre d’Enfouissement Technique (CET) de Côte d’Ivoire: Cas du CET de Kossihouen dans le District d’Abidjan (Côte d’Ivoire). Int J Biol Chem Sci 2012; 5: 2524–42. |
[14] | Rodier J. Analyse de l’eau. 9ème Edition. Dunod; 2009. |
[15] | Gbagbo T, Kpaibe SP, Gokpeya K, Able N, Seki T, Bakayoko A, et al. Caracterisation physicochimique et bacteriologique des eaux de consommation de la nappe phreatique du village M’pody (Cote d’Ivoire).: Physicochemical and bacteriological characterization of drinking water from the groundwater from M’pody village (Cote d’Ivoire). J Rech Sci L’Université Lomé 2020; 22: 775–792. |
[16] | Eblin S, Sombo A, Soro G, Aka N, Kambire O, Soro N. Hydrochimie des eaux de surface de la région d’Adiaké (sud-est côtier de la Côte d’Ivoire). J Appl Biosci 2014; 75: 6259. |
[17] | Hadj C. Etude comparative de la qualité physico-chimique et bactériologique entre eau de puits de Si Abdelghani (Tiaret) et Puits de Daïa (Ghardaïa) 2020. |
[18] | Kanohin F, Otchoumou E, Yapo OB, Dibi B, Bonny AC. Caractérisation physico-chimique et bactériologique des eaux souterraines de Bingerville. Int J Biol Chem Sci 2018; 11: 2495. |
[19] | LE MDESD, DE SDMC. Caracterisation Hydrogeochimique et Microbiologique des Eaux Souterraines dans le Système d’aquifères Multi Couche de la Région de Pointe-Noire en République du Congo. Larhyss J, 2016: 28: 257–273. |
[20] | Amadou H, Laouali M, Manzola A. Analyses physico-chimiques et bactériologiques des eaux de trois aquifères de la région de Tillabery: application des méthodes d’analyses statistiques multi variées. Larhyss J, 2014. |
[21] | Amin CN, Dibi KS, Yapo WT, Able CN, Kpaibé PAS, Kouadio L, et al. Chemical and bacteriological control of drinking water from 15 villages in Côte d’Ivoire. Int J Nutr Food Sci 2019; 7: 180–186. |
[22] | Soncy K, Djeri B, Anani K, Eklou-Lawson M, Adjrah Y, Karou D, et al. Évaluation de la qualité bactériologique des eaux de puits et de forage à Lomé, Togo. J Appl Biosci 2015; 91: 8464. |
[23] | Mouissi S, Alayat H. Utilisation de l’Analyse en Composantes Principales (ACP) pour la caractérisation Physico-chimique des eaux d’un écosystème aquatique: Cas du Lac Oubéira (Extrême NE Algérien). J Mater Environ Sci, 2016; 7: 2214–2220. |
[24] | Kernoug S, Slamani F. Etude comparative de la qualité physico-chimique et de la qualité bactériologique de l’eau potable obtenue par deux procédés de traitement des eaux de surface: le cas de la station de Taksebt et la station d’Imsouhal 2022. |
[25] | Souleymane IMS, Babaye MSA, Alhassane I, Boureima O. Caractérisations hydrogéochimiques et qualités des eaux de la nappe phréatique du haut bassin versant de la Korama, commune de Droum/région de Zinder (Niger/Afrique de l’Ouest). Int J Biol Chem Sci 2020; 14: 1862–1877. |
APA Style
Ablé, C. N., Kpaibe, S. A. P., Gbagbo, A. T., Yao, M. A., Kouamé, J., et al. (2025). Physico-Chemical and Bacteriological Characterization of Groundwater from Banana Plantations in the Agnéby-Tiassa and Sud Comoé Regions of Côte d'Ivoire. Science Journal of Analytical Chemistry, 13(1), 25-35. https://doi.org/10.11648/j.sjac.20251301.14
ACS Style
Ablé, C. N.; Kpaibe, S. A. P.; Gbagbo, A. T.; Yao, M. A.; Kouamé, J., et al. Physico-Chemical and Bacteriological Characterization of Groundwater from Banana Plantations in the Agnéby-Tiassa and Sud Comoé Regions of Côte d'Ivoire. Sci. J. Anal. Chem. 2025, 13(1), 25-35. doi: 10.11648/j.sjac.20251301.14
AMA Style
Ablé CN, Kpaibe SAP, Gbagbo AT, Yao MA, Kouamé J, et al. Physico-Chemical and Bacteriological Characterization of Groundwater from Banana Plantations in the Agnéby-Tiassa and Sud Comoé Regions of Côte d'Ivoire. Sci J Anal Chem. 2025;13(1):25-35. doi: 10.11648/j.sjac.20251301.14
@article{10.11648/j.sjac.20251301.14, author = {Carine Nina Ablé and Sawa André Philippe Kpaibe and Aubin Tchape Gbagbo and Marcelle Adjoa Yao and Jean-Kisito Kouamé and N’Cho Christophe Amin}, title = {Physico-Chemical and Bacteriological Characterization of Groundwater from Banana Plantations in the Agnéby-Tiassa and Sud Comoé Regions of Côte d'Ivoire }, journal = {Science Journal of Analytical Chemistry}, volume = {13}, number = {1}, pages = {25-35}, doi = {10.11648/j.sjac.20251301.14}, url = {https://doi.org/10.11648/j.sjac.20251301.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjac.20251301.14}, abstract = {In industrial plantations, groundwater is used as a source of drinking water, although it can be affected by contamination from agricultural activities. The aim of our study was to assess the physico-chemical and bacteriological quality of groundwater from industrial plantations in the south of Côte d'Ivoire. The methodological approach consisted of an annual sampling campaign of water supply sources in four (04) plantations from 2016 to 2019 and the analytical approach consisted of determining the various physico-chemical and bacteriological parameters of these different water sources. The physico-chemical analysis used electrochemical and spectrophotometric methods, while the bacteriological analysis was based on the membrane filtration technology. The results showed that the water was characterized by: an average acid pH of 6.09, low mineralization (from 12.83 to 139.29 µS/cm), high iron values ranging from 0.5 to 3.2 mg/L (in 37% of the samples), organic matter ranging from 7.8 to 13.5 mg/L (30% of the samples), and aluminium and ammonium values of 0.3 to 1.1 mg/L and 1.75 to 6.75 mg/L respectively (26% of the samples). Contamination by germs indicative of faecal pollution was also observed in 30% of samples. In conclusion, these waters are of unsatisfactory quality and unfit for consumption. Measures to improve water quality in these plantations should be considered. }, year = {2025} }
TY - JOUR T1 - Physico-Chemical and Bacteriological Characterization of Groundwater from Banana Plantations in the Agnéby-Tiassa and Sud Comoé Regions of Côte d'Ivoire AU - Carine Nina Ablé AU - Sawa André Philippe Kpaibe AU - Aubin Tchape Gbagbo AU - Marcelle Adjoa Yao AU - Jean-Kisito Kouamé AU - N’Cho Christophe Amin Y1 - 2025/03/14 PY - 2025 N1 - https://doi.org/10.11648/j.sjac.20251301.14 DO - 10.11648/j.sjac.20251301.14 T2 - Science Journal of Analytical Chemistry JF - Science Journal of Analytical Chemistry JO - Science Journal of Analytical Chemistry SP - 25 EP - 35 PB - Science Publishing Group SN - 2376-8053 UR - https://doi.org/10.11648/j.sjac.20251301.14 AB - In industrial plantations, groundwater is used as a source of drinking water, although it can be affected by contamination from agricultural activities. The aim of our study was to assess the physico-chemical and bacteriological quality of groundwater from industrial plantations in the south of Côte d'Ivoire. The methodological approach consisted of an annual sampling campaign of water supply sources in four (04) plantations from 2016 to 2019 and the analytical approach consisted of determining the various physico-chemical and bacteriological parameters of these different water sources. The physico-chemical analysis used electrochemical and spectrophotometric methods, while the bacteriological analysis was based on the membrane filtration technology. The results showed that the water was characterized by: an average acid pH of 6.09, low mineralization (from 12.83 to 139.29 µS/cm), high iron values ranging from 0.5 to 3.2 mg/L (in 37% of the samples), organic matter ranging from 7.8 to 13.5 mg/L (30% of the samples), and aluminium and ammonium values of 0.3 to 1.1 mg/L and 1.75 to 6.75 mg/L respectively (26% of the samples). Contamination by germs indicative of faecal pollution was also observed in 30% of samples. In conclusion, these waters are of unsatisfactory quality and unfit for consumption. Measures to improve water quality in these plantations should be considered. VL - 13 IS - 1 ER -