Abstract: Steam turbines, like other turbo-engines, require sealing elements, which prevent the working fluid escape outside of the turbine, causing power losses and environmental contamination. In this work the Flow Field in Spiral Grooves of Steam Turbine Dry Seals was determined using Computational Fluid Dynamics (CFD). The dry seal considered in this study has spiral grooves on the moving face. The flow field was computed for two different spiral groove inlet angle configurations (13 and 15 degrees). Additionally the opening force caused by the effect of the interaction of the rotational speed of the grooves and flow field was determined. Among the results it was found that the opening force generated on the seal walls is proportional to the opening angle of the spiral grooves. The spiral groove inlet angle of 15° generated major opening force.Abstract: Steam turbines, like other turbo-engines, require sealing elements, which prevent the working fluid escape outside of the turbine, causing power losses and environmental contamination. In this work the Flow Field in Spiral Grooves of Steam Turbine Dry Seals was determined using Computational Fluid Dynamics (CFD). The dry seal considered in this stu...Show More