Myriads of materials have been used for replacement of missing teeth through implantation. The success of these materials depend on the ability to integrate with the host environment showing biological compatibility, mechanical compatibility, and morphological compatibility to the surrounding vital tissues. Certain materials have shown this promising property and have been used in dental implantology. With recent advances in technology, these materials are better able to improve fixation to bone through various surface modifications and bioengineering
Published in | Science Research (Volume 2, Issue 1) |
DOI | 10.11648/j.sr.20140201.12 |
Page(s) | 7-12 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2014. Published by Science Publishing Group |
Biocompatibility, Dental Implant, Surface Modification
[1] | Branemark PI, Hansson BO, Adell R, et al . Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10 year period. Scand J Plast Reconstr Surg Suppl 1977;16:1-132. |
[2] | Albrektsson T, Wennerberg A. The impact of oral implants – past and future, 1966-2042. J Can Dent Assoc 2005;71(5):327. |
[3] | Brunette DM, Tengvall P, Textor, M & Thomsen P. Titanium in medicine: material science, surface science, engineering, biological responses, and medical applications. Berlin, Germany: Springer (eds) 2001. |
[4] | Brånemark R, Emanuelsson L, Palmquist A & Thomsen P. Bone response to laser induced micro- and nano-size titanium surface features. Nanomedicine 2011;7(2):220-7. |
[5] | Naganawa T, Ishihara Y, Iwata T, Koide A, Ohguchi M, Ohguchi Y. In vitro biocompatibility of a new titanium-29niobium-13tantalum-4.6zirconium alloy with osteoblast-like MG63 cells. J Periodontol 2004;75:1701–1707. |
[6] | Cheng Y, Hu J, Zhang C, Wang Z, Hao Y, Gao B. Corrosion behavior of novel Ti-24Nb-4Zr-7.9Sn alloy for dental implant applications in vitro. J Biomed Mater Res B Appl Biometer 2013 Feb;101(2):287-94. |
[7] | T Albrektsson, A R Eriksson, B Friberg et al., “Histologic investigations on 33 retrieved nobelpharma implants,” Clinical Materials 1993;12(1):1–9. |
[8] | Monsees TK, Barth K, Tippelt S, et al. Surface patterning on adhesion, differentiation, and orientation of osteoblast-like cells. Cell Tiss Org 2005;180:81–95. |
[9] | Gupta, A.; Dhanraj, M. & Sivagami, G. Status of surface treatment in endosseous implant: a literary overview. Indian journal of dental research 2010;21:433-438. |
[10] | Gotfredsen K, Karlsson U. A prospective 5-year study of fixed partial prostheses supported by implants with machined and TiO2-blasted surface. J Prosthodont 2001;10:2-7. |
[11] | Cochran DL, Nummikoski PV, et al. Evaluation of an endosseous titanium implant with sandblasted and acid- etched surface in the canine mandible: Radiographic results. Clin Oral Implants Res 1996;7:240-52. |
[12] | Orsini G, Assenza B, Scarano A, Piattelli M, Piattelli A.Surface analysis of machined versus sandblasted and acid etched titanium implants. Int J Oral Maxillofac Implants 2000;15:779-84. |
[13] | Reising A, Yao C, Storey D, Webster T J. Greater osteoblast long-term functions on ionic plasma deposited nanostructured orthopedic implant coatings. J Biomed Mater Res A 2008;87:78-83. |
[14] | Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmen A & Ellingsen JE. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Biomaterials 2006;27:926-936. |
[15] | Titanium applications in dentistry, ADA council on scientific affairs. JADA 2003;134:347-49. |
[16] | Misch Contemporary Implant Dentistry. 3rd ed Mosby .2008. p 614. |
[17] | Faeda RS, Spin-Neto R, Marcantonio E, Guastaldi AC, Marcantonio E Jr. Laser ablation in titanium implants followed by biomimetic hydroxyapatite coating: Histomorphometric study in rabbits. Microsc Res Tech. 2012;75(7):940-8. |
[18] | McCafferty MM, Burke GA, Meenan BJ. Mesenchymal stem cell response to conformal sputter deposited calcium phosphate thin films on nanostructured titanium surfaces. J Biomed Mater Res A 2013 Nov 1. doi: 10.1002/jbm.a.35018. [Epub ahead of print] |
[19] | Caous JS, Lövenklev M, Fäldt J, Langton M. Adhesion of Streptococcus mitis and Actinomyces oris in co-culture to machined and anodized titanium surfaces as affected by atmosphere and pH. BMC Oral Health 2013 Jan 8;13:4. doi: 10.1186/1472-6831-13-4. |
[20] | Herr Y, Woo J, Kwon Y, Park J, Heo S & Chung J. Implant Surface Conditioning with Tetracycline-HCl: A SEM Study. Key Engineering Materials 2008;361:849-852. |
[21] | Vincenzini P, editor: Ceramics in surgery, Amsterdam, 1983, Elsevier. |
[22] | Berge TI, Gronningsaeter AG. Survival of single crystal sapphire implants supporting mandibular overdentures. Clin Oral Implants Res 2000;11(2):154-62. |
[23] | Dunn DB. The use of a zirconia custom implant supported FPD prosthesis to treat implant failure in anterior maxilla: A clinical report J Prosthet Dent 2008;100:415-21. |
[24] | Van Brakel R, Cune MS, van Winkelhoff AJ, de Putter C, Verhoeven JW, van der Reijden W. Early bacterial colonization and soft tissue health around zirconia and titanium abutments: An In vivo study in man. Clin Oral Impl Res 2011;22:571-7. |
[25] | Gahlert M, Rohling S, Wieland M, Sprecher CM, Kniha H, Milz S. Osseointegration of zirconia and titanium dental implants: A histological & histomorphometrical study in the maxilla of pigs. Clin Oral Implants Res 2009;20:1247-53. |
[26] | Dubruille JH, Viguier E, Le Naour G, Dubruille MT, Auriol M, Le Charpentier Y. Evaluation of combinations of titanium, zirconia, and alumina implants with 2 bone fillers in the dog. Int J Oral Maxillofac Implants 1999;14:271-7. |
[27] | Tete S, Mastrengelo F, Bianchi A, Zizzari V, Scarano A. Collagen fiber orientation around machined titanium and zirconia dental implant necks: An animal study. Int J Oral Maxillofac Implants 2009;24:52-8. |
[28] | Daculsi G. Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials.1998;19:1473–8. |
[29] | de Jonge LT, Leeuwenburgh SC, Wolke JG, Jansen JA. Organicinorganic surface modifications for titanium implant surfaces. Pharm Res 2008;25:2357–69. |
[30] | The effect of calcium phosphate implants coating on osteoconduction. Yang C. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001 Dec;92(6):606-9. |
[31] | Alghamdi HS, Cuijpers VM, Wolke JG, van den Beucken JJ, Jansen JA. Calcium-phosphate-coated oral implants promote osseointegration in osteoporosis. J Dent Res 2013;92(11):982-8. |
[32] | Liu Y, Huse RO, de Groot K, Buser D, Hunziker EB. Delivery mode and efficacy of BMP-2 in association with implants. J Dent Res. 2007;86:84–9. |
[33] | Paital SR, Dahotre NB. Calcium phosphate coatings for bio implant applications: materials, performance factors, and methodologies. Mater Sci Eng R 2009;66:1–70. |
[34] | Kou W, Akasaka T, Watari F, Sjögren G. An in vitro evaluation of the biological effects of carbon nanotube-coated dental zirconia. ISRN Dent 2013 August 20;2013:296727. doi: 10.1155/2013/296727. |
[35] | Shim HS. The mechanical behavior of LTI carbon dental implants. Biomater Med Devices Artif Organs 1976;4(2):181-92. |
APA Style
Suraksha Shrestha, Sarita Joshi. (2014). Current Concepts in Biomaterials in Dental Implant. Science Research, 2(1), 7-12. https://doi.org/10.11648/j.sr.20140201.12
ACS Style
Suraksha Shrestha; Sarita Joshi. Current Concepts in Biomaterials in Dental Implant. Sci. Res. 2014, 2(1), 7-12. doi: 10.11648/j.sr.20140201.12
AMA Style
Suraksha Shrestha, Sarita Joshi. Current Concepts in Biomaterials in Dental Implant. Sci Res. 2014;2(1):7-12. doi: 10.11648/j.sr.20140201.12
@article{10.11648/j.sr.20140201.12, author = {Suraksha Shrestha and Sarita Joshi}, title = {Current Concepts in Biomaterials in Dental Implant}, journal = {Science Research}, volume = {2}, number = {1}, pages = {7-12}, doi = {10.11648/j.sr.20140201.12}, url = {https://doi.org/10.11648/j.sr.20140201.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sr.20140201.12}, abstract = {Myriads of materials have been used for replacement of missing teeth through implantation. The success of these materials depend on the ability to integrate with the host environment showing biological compatibility, mechanical compatibility, and morphological compatibility to the surrounding vital tissues. Certain materials have shown this promising property and have been used in dental implantology. With recent advances in technology, these materials are better able to improve fixation to bone through various surface modifications and bioengineering}, year = {2014} }
TY - JOUR T1 - Current Concepts in Biomaterials in Dental Implant AU - Suraksha Shrestha AU - Sarita Joshi Y1 - 2014/04/20 PY - 2014 N1 - https://doi.org/10.11648/j.sr.20140201.12 DO - 10.11648/j.sr.20140201.12 T2 - Science Research JF - Science Research JO - Science Research SP - 7 EP - 12 PB - Science Publishing Group SN - 2329-0927 UR - https://doi.org/10.11648/j.sr.20140201.12 AB - Myriads of materials have been used for replacement of missing teeth through implantation. The success of these materials depend on the ability to integrate with the host environment showing biological compatibility, mechanical compatibility, and morphological compatibility to the surrounding vital tissues. Certain materials have shown this promising property and have been used in dental implantology. With recent advances in technology, these materials are better able to improve fixation to bone through various surface modifications and bioengineering VL - 2 IS - 1 ER -