Research Article | | Peer-Reviewed

Research Progress on the Application of Autogenous Demineralized Dentin Matrix Particles for the Regeneration in Periodontitis Alveolar Defect

Received: 13 February 2025     Accepted: 26 February 2025     Published: 18 March 2025
Views:       Downloads:
Abstract

Demineralized Dentin Matrix (DDM) is derived from discarded human teeth and has a micro-nano structure with porous network. Its dentinal tubules are rich in various enzymes, antimicrobial peptides, and cytokines such as BMP, IGFs, TGF - β, VEGF, IGF, etc., which can guide various cells in the alveolar fossa to grow into the extraction socket and form new bone, which is used for the reconstruction of periodontal bone defects. DDM particles have the advantages of wide source, no immune rejection, simple production process, and low cost. As a new ideal bone material, it is expected to become a substitute for traditional materials on bone transplantation. In this paper, different methods and strategies for the regeneration of alveolar bone defects were summarized, such as bone replacement materials combined with barrier membrane, autologous blood clot, blood derivatives such as PRF and CGF, and other novel biological materials. Then, the physicochemical and biological properties of DDM granules, the improved manufacturing process and the research status of the regeneration of alveolar bone defects caused by periodontitis were reviewed. Finally, the limitations of DDM application and the future direction for DDM development were proposed, in order to expect more evidence-based medical evidence for the clinical application of DDM.

Published in Science Discovery (Volume 13, Issue 1)
DOI 10.11648/j.sd.20251301.11
Page(s) 1-5
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2025. Published by Science Publishing Group

Keywords

Demineralized Dentin Matrix, Periodontitis, Site Preservation, Bone Regeneration

1.前言
在临床中,牙槽窝缺损再生的理想骨替代材料应该具备良好的生物相容性、骨诱导性和可降解性,且价格低廉、易于储存运输及消毒处理。目前材料包括自体骨、同种异体骨、异种骨及人工合成骨等。但这些材料或多或少存在缺乏骨诱导性、免疫排斥反应、降解速率与成骨速率不匹配及价格昂贵等问题。因此,探寻一种理想的骨替代材料一直是口腔医学领域研究的热点。脱矿牙本质基质(demineralized dentin matrix, DDM)颗粒具有天然的多孔网状结构,牙本质小管内富含的各种酶类、抗菌肽和细胞因子,可引导牙周组织中各类细胞长入拔牙窝并形成新骨质,作为引导组织再生(GTR)的支架材料应用于牙周骨缺损再生中。近年来,关于DDM的动物和临床研究的文献越来越多,表明其实用价值受到了医患广泛认可。本文就DDM颗粒的理化生物学性质、备改进方案及其在牙周炎导致的牙槽骨缺损再生中的研究进展做一综述。
2.牙周炎拔牙位点保存的不同材料和策略
重度牙周炎造成牙周软硬组织的严重破坏,患牙拔除后会进一步导致牙槽骨不可逆吸收和软硬组织塌陷缺损。若拔牙同期行位点保存术可减少牙周炎患牙剩余牙槽骨的过度吸收,有效保存牙周组织,为后期修复创造良好的牙周基础条件。牙槽骨缺损再生常用的方法有:拔牙窝内植入各种骨替代材料联合或不联合屏障膜、拔牙窝内直接填入自体血凝块、富血小板纤维蛋白(PRF)、浓缩生长因子(CGF)等血液衍生物
2.1.骨替代材料联合屏障膜
拔牙位点保存中应用最广泛的是骨替代材料联合屏障膜。屏障膜可以阻挡上皮组织长入拔牙窝,为下方的骨替代材料提供一个相对封闭的愈合环境,有利于下方骨替代材料引导骨再生。屏障膜包括可吸收膜和不可吸收膜两大类。不可吸收膜如钛膜,机械强度好,可以维持拔牙窝的空间,但存在需二次手术取出、增加患者痛苦及经济负担等缺点,临床使用受到限制。可吸收膜如胶原膜、Bio-Gide膜等,具有良好的生物相容性,可吸收性好,无需二次手术取出,临床应用广泛。常用的骨替代材料包括自体骨、同种异体骨、异种骨及人工合成骨等。自体骨因具有良好的骨诱导性、骨传导性及成骨能力,被视为牙周及口腔种植领域骨缺损修复的金标准,但自体骨来源有限,取材部位附加损伤、增加患者痛苦及术后不适等缺点限制了其广泛应用。同种异体骨和异种骨则存在免疫排斥反应和传播疾病等风险,临床使用也受到限制。人工合成骨如羟基磷灰石、磷酸三钙、生物活性玻璃陶瓷等,具有良好的生物相容性和骨传导性,但缺乏骨诱导性,成骨效果有限,且存在降解速率与成骨速率不匹配等问题。商品化骨替代材料如Bio-Oss、Noross、PerioGlas等,因具有良好的骨传导性,在临床应用广泛,但其昂贵的价格限制了其推广应用。胡文杰团队等针对罹患重度牙周病磨牙,拔牙即刻植入Bio-Oss覆盖Bio-Gide胶原膜,采用翻瓣后冠向复位和微翻瓣胶原蛋白覆盖两种方法保存牙槽嵴,表明后者更有利于保存颊侧角化龈。
2.2.自体血凝块、PRF及CGF等血液衍生物
拔牙窝内直接填入自体血凝块,可减少拔牙窝的改建吸收,促进软硬组织的再生。PRF是由Choukroun等发明的一种第二代血小板浓缩物,是富含纤维蛋白网的三维结构,含有大量生长因子,如血小板衍生生长因子(PDGF)、转化生长因子-β(TGF-β)、血管内皮生长因子(VEGF)、胰岛素样生长因子(IGF)等,具有良好的生物相容性、可降解性及骨诱导性。而CGF (concentrated growth factor, CGF)是Sacco等在PRF基础上,通过改变离心速度和时间所获得的富含更多纤维蛋白的血小板浓缩物,其含有的生长因子浓度更高,成纤维细胞及胶原纤维含量更多,具有更好的促进软硬组织再生的能力。夏婷婷等评价蛋白牛骨基质(DBBM)与CGF联合用于重度牙周炎患牙位点保存中对牙槽骨三维轮廓的维持疗效,结果表明:与单独应用DBBM相比,DBBM和CGF联合应用可以更好维持重度牙周炎患牙拔牙窝的牙槽骨轮廓。王安琪等通过影像学和组织学比较3种比例的浓缩CGF与Bio-Oss骨粉混合物应用于重度牙周炎患牙位点保存术中的成骨效果,表明以2:1的比例成骨效果更佳。
2.3.新型生物材料
随着组织工程学和再生医学的发展,各种新型生物材料不断应用于拔牙位点保存中,如胶原海绵、壳聚糖、透明质酸、磷酸钙骨水泥、聚乳酸-羟基乙酸共聚物(PLGA)等。这些新型生物材料具有良好的生物相容性、可降解性及一定的骨传导性,可以通过复合生长因子、细胞等活性因子,进一步促进软硬组织的再生。但存在降解速率与成骨速率不匹配、成骨效果有限等问题,临床应用效果尚需进一步验证。
3.脱矿牙本质基质(DDM)的基础及临床研究
3.1.牙本质的理化特性
牙本质的组织学来源为外胚间充质的神经嵴细胞,其无机物、有机物和水的含量分别约占70%、20%和10%,其无机成分包括羟基磷灰石(hydroxyapatite, HA)、磷酸三钙(tri⁃calcium phosphate, TCP)、磷酸八钙(octacalciumphosphate, OCP)和无定形磷酸钙(amorphous calcium phosphate, ACP)等。其中HA占无机成分的70%,是一种高溶解度、低结晶的磷酸钙。牙本质中的有机基质由胶原蛋白和非胶原蛋白组成,前者占有机成分的90%,主要为Ⅰ型胶原。Janjua等研究发现,自体矿化牙本质基质(autogenous mineralized dentin matrix, AMDM)具有与皮质骨相似的表面结构和理化特性,是一种具有致密、微孔和低结晶结构的可降解生物材料。而经脱矿处理牙本质小管结构的微纳米孔径更宽,可获得更有利于成骨的显微结构。
3.2.DDM的生物学特性
DDM来源于废弃的人类牙齿,是一种天然生物材料并具有良好的骨诱导性,其机制可能与DDM微细颗粒中残留的生长因子有关,如骨形态发生蛋白(bone morphogenetic protein, BMP)、胰岛素样生长因子(IGFs)、转化生长因子-β(TGF-β)等,这些生长因子可以促进牙槽窝周围组织中BMSCs的增殖、分化及矿化,从而促进拔牙创内新骨的形成。此外,DDM的多孔网状结构也提供了一个良好的生长环境,有利于周围多种细胞成分的迁移、黏附及增殖。Tanoue等利用FIB-SEM显微镜断层扫描,对完全脱矿的牙本质基质与周围新生骨之间的界面进行三维超微结构分析显示:周围新生骨组织的骨细胞通过细胞突起相连形成网格结构,细胞突起嵌入式延伸至牙本质小管中。李锐等观察处理牙本质基质(TDM)浸提液对牙髓干细胞(DPSC)成牙分化的诱导作用及可能机制,表明TDM浸提液可以促进DPSC成牙分化,其机制可能与抑制GSK3β,激活Wnt/β-catenin信号通路有关。动物实验也表明,DDM植入骨缺损区后促进新骨形成的良好骨再生效果。杨胜银等将DDM植入兔竖脊肌中后,其与周围组织紧密接触并形成钙结节骨样组织。
DDM不仅具有良好的骨诱导性,还可以促进牙周膜细胞(PDLSCs)向成牙骨质/成骨细胞分化,促进牙周新附着的形成。DDM具有强大的抗肿瘤活性,可抑制人乳腺癌MCF-7细胞增殖,诱导其凋亡。此外,DDM与干细胞结合用于骨组织工程的研究方面也取得了显著进展:将DDM与脂肪源性干细胞(ASCs)等成体干细胞结合,构建的DDM/ASCs生物复合支架具有良好的促成骨性能。以上研究均表明,DDM自体移植在骨增生方面取得了成功,显示出其在硬组织移植材料处理中的科学依据和临床价值。然而DDM在体内对牙槽骨再生的成骨机制仍需进一步深入,以确保其在临床上的安全性和有效性。
3.3.DDM颗粒的制备方法研究
DDM的制备过程包括去除牙釉质、牙骨质和牙髓组织,然后进行脱矿、冲洗、冻干、粉碎、病毒灭活和消毒等步骤。其中脱矿程度是影响DDM生物学特性的重要因素之一,过度脱矿会导致胶原纤维破坏,影响DDM的支架作用;脱矿不足则会阻碍生长因子,影响其骨诱导性。因此,DDM制备过程中需严格控制脱矿条件。目前常用的处理酸剂包括盐酸、柠檬酸、EDTA等。陈华宇等观察兔的上颌门牙的牙本质基质制备粒度与脱矿程度对其性能的影响,采用稀盐酸(HCL)溶液(浓度1 mol/L)脱矿45 min,干燥后制备成3种不同粒径(小于400 μm, 400-800 μm, 800-1200 μm),进行扫描电镜、静态接触角、红外光谱检测及电子能谱仪钙元素测定,结果显示粒径较小的DDM材料牙本质小管暴露更充分,且具有更优的亲水性,脱矿程度的增加会降低DDM材料中无机物的含量,但对胶原含量影响较小。Dłucik等研究发现3种不同设备制作的DDM均显示出良好的形态特征,表明牙本质与骨骼之间存在充分结合的结构基础。
但也有研究表明粒径200 μm的DDM能够显著增强BMSCs的成骨细胞活性、BMP等基因表达。总之在DDM制备过程中,通过控制微纳米结构和生化成分会显著影响其生物相容性和骨诱导性。
3.4.DDM的临床应用
在国内,胡常琦等将DDM用于16名患者拔牙后位点保存及种植同期骨增量的骨改建情况,术后拍摄CBCT测量牙槽嵴骨高度、宽度及骨缺损深度等指标,证明DDM应用于牙槽嵴保存术的良好疗效。刘一秀等选取因囊肿而无保留价值的患牙和松动牙及阻生第三磨牙作为植骨材料,采用开窗减压术+二期刮治术+自体DDM植入“三步法”,长期随访显示DDM修复了直径大于6 mm的颌骨囊肿缺损。
在国际上,Murata等通过自体牙本质块与人工合成骨粉联合引导骨再生修复了19例患者的牙槽嵴颊侧骨缺损,与移植前相比,术后6个月牙槽嵴各部位的骨量显著增加。Matsuzawa等报道了1例以自体乳牙DDM修复6岁男童牙槽突裂的病例,在长达6年的随访观察期间未出现并发症。Kanazirski等报道了自体DDM用于种植体周炎、根尖囊肿和牙周炎的病例,均获得了良好的骨重建效果和种植体稳定性。此外,DDM还可用于根分叉病变、根尖诱导成形术和正畸治疗前的骨增量等其他方面
3.5.DDM与其他骨替代材料的比较
有学者提出,DDM在牙槽骨缺损修复中可以与羟基磷灰石-β-磷酸三钙(hydroxyapatite-β- phosphate thalamic acid, hBPCA)、骨形态发生蛋白-2 (bone morphogenetic protein, BMP-2)、Bio-Oss胶原等骨组织工程材料进行比较,以验证DDM是否达到现有临床骨替代材料同等的组织生物效果。Kim MG等研究表明,自体DDM在GBR中的初始骨膜吸收结果不逊于Bio-Oss胶原。Elfanna等使用DDM进行骨再生后形成的皮质骨和松质骨维持时间平均为5年。此外,Kothari和Peceliunaite等多项系统综述均指出,在GBR中使用DDM和Bio-Oss作为骨替代材料时,两者在促进骨再生方面效果相当。
4.自体DDM在牙周骨再生的应用
重度牙周炎引起的牙槽骨缺损再生,一直是口腔临床医学中的难点领域。近年基础研究证明:牙本质中含有天然抗菌肽(如神经肽P物质、神经激肽A、降钙素基因相关肽和肾上腺髓质素),其可破坏细菌细胞膜并在宿主组织中发挥抗感染防御作用
在国内,孙娟斌等实施了一项分别将DDM与Bio-oss骨粉应用于牙周炎垂直性骨缺损区域的对照实验。Li等选取25例重度牙周病患者,将DDM 颗粒放入骨缺损处,Bio-Gide胶原膜覆盖移植材料并关闭创口,术后6个月影像学分析显示了局部牙槽骨高度和密度的显著增长。任文平等在63例前牙区牙周炎患牙拔牙术后,应用自体DDM联合Nd: YAG激光保持牙槽窝。国际上,Smith等研究也表明DDM 对牙周病相关的3种厌氧菌(变形链球菌、口腔葡萄球菌和粪肠球菌)表现出抑菌活性,有助于骨缺损修复中的免疫防御反应。Murata等对1例拔牙2个月后牙槽窝愈合失败的患者移植DDM,此刻局部炎性环境与牙周炎病理状态类似,而在术后5个月的组织活检显示:新骨与DDM和牙骨质基质直接相连,证明DDM促进了未愈合牙槽骨的再生。这些研究均表明:采用重度牙周炎拔除的患牙制成的DDM在牙槽骨保存中的临床有效性
要取得更佳的炎性骨愈合效果,DDM做为组织工程细胞支架材料,联合BMSCs的应用也是一种新的研究策略,实验证明其在局部微环境中的成骨及破骨细胞内STRO-1、RUNX-2、OSX和col-1通路的生物标志物表达上调。然而,目前关于DDM在重度牙周炎引起的复杂骨缺损中的应用,仍需更多的临床研究来验证其长期效果。
5.DDM应用的局限性和未来发展方向
DDM作为一种制作流程简便快速、成本低廉的新型理想骨诱导支架材料,有望成为传统骨移植材料的替代品。但DDM也有其局限性,如存在移植位点局部感染风险、在颗粒含量低移植量有限、在牙槽窝内降解速度较慢等等。因此,DDM在临床中的应用策略可以考虑如下改进方案:①将不同来源、不同性质的DDM复合使用;②将自体DDM与其他商品化骨移植物混合使用;③提高制备时颗粒的脱矿程度,以加快体内的降解速度;④将自体DDM与多种来源的胶原膜联合应用,提高局部成骨效率。
今后应继续扩大样本数量、改进提取方法、深入研究不同制备方法对DDM细胞活性、降解速率和骨支架诱导性的影响,并进一步验证其应用于牙周炎症状态下牙槽骨缺损修复的效果,为其广泛应用提供更佳的临床循证依据。
基金项目
2023年度佛山市卫生健康局医学科研课题(No: 20230815A010053);佛山市自筹经费类科技创新项目(No: 2220001004989)。
References
[1] Lai SY, JX. Hou. Progress in the application of alveolar ridge preservation at extraction sites in non-periodontitis and periodontitis patients. Chinese journal of stomatology, 2020, 55(4): 266-270.
[2] 张超颖, 龚佳幸, 俞梦飞, 等.牙槽嵴保存术在牙周炎拔牙患者中的应用进展 [J]. 口腔医学, 2023, 43(2): 159-165.
[3] Dai A, Li HY, Kang S, et al. Effect of alveolar ridge preservation at periodontally compromised molar extraction sockets: A retrospective cohort study. J Periodontol, 2025, 96(1): 9-20.
[4] Apaza-Bedoya K, Magrin GL, Romandini M, et al. Efficacy of alveolar ridge preservation with xenografts and resorbable socket sealing materials in the esthetic region: A systematic review with meta-analyses. Clin Implant Dent Relat Res. 2024, 26(1): 4-14.
[5] 赵丽萍, 胡文杰, 徐涛, 等. 罹患重度牙周病变磨牙拔牙后两种牙槽嵴保存方法的比较 [J]. 北京大学学报: 医学版, 2019, 51(3): 7.
[6] 危伊萍, 徐涛, 胡文杰, 等. 重度牙周炎磨牙拔牙同期微翻瓣牙槽嵴保存术后种植修复效果的前瞻性队列研究 [J].中华口腔医学杂志, 2024, 59(04): 318-325.
[7] 李芷萱, 冯立新, 徐颖, 等.不同自体血小板浓缩物在重度牙周炎拔牙后位点保存中的应用 [J]. 口腔颌面修复学杂志, 2022, 23(3): 6.
[8] 夏婷婷, 汪涌. 重度牙周炎后牙位点保存术中联合应用浓缩生长因子的疗效评价[J].上海口腔医学, 2023, 32(6): 650-655.
[9] 王安琪, 汪涌. 三种比例CGF与异种骨Bio-Oss联合应用于重度牙周炎位点保存的疗效评价 [J]. 临床口腔医学杂志, 2023, 39(10): 606-610.
[10] 孙徐麟, 戴安娜, 黄佳萍, 等. 牙槽嵴保存术在牙周感染位点中的应用: 从软硬组织再生到后续种植修复 [J]. 口腔医学, 2024, 44(2): 130-138.
[11] Li J, Jin F, Wang RF, et al. Guided Bone Regeneration in a Periodontally Compromised Individual with Autogenous Tooth Bone Graft: A Radiomics Analysis [J]. J. Funct. Biomater, 2023, 14(4), 220.
[12] Sohn DS, Lui A, Choi H. Utilization of Tenting Pole Abutments for the Reconstruction of Severely Resorbed Alveolar Bone: Technical Considerations and Case Series Reports. J Clin Med., 2024, 13(4): 1156.
[13] Ferraz M P. Bone Grafts in Dental Medicine: An Overview of Autografts, Allografts and Synthetic Materials [J]. Materials (Basel), 2023, 16(11): 4117.
[14] Janjua OS, Qureshi SM, Shaikh MS, et al. Autogenous Tooth Bone Grafts for Repair and Regeneration of Maxillofacial Defects: A Narrative Review. Int J Environ Res Public Health. 2022, 19(6): 3690.
[15] Tanoue R, Ohta K, Miyazono Y, et al. Three-dimensional ultrastructural analysis of the interface between an implanted demineralised dentin matrix and the surrounding newly formed bone [J]. Sci Rep, 2018, 8(1): 2858.
[16] 李锐, 付昊杰, 孙晶晶, 等.处理牙本质基质浸提液对牙髓干细胞成牙分化的影响 [J]. 郑州大学学报: 医学版, 2023, 58(3): 310-315.
[17] 杨胜银, 陈平, 鲍济波, 等.脱矿牙本质基质骨诱导性及对相关细胞鉴定的实验研究 [J]. 华西口腔医学杂志, 2018, 36(1): 33-38.
[18] Ku, JK Lim, JH Lim, JA et al. Reducing Healing Period with DDM/rhBMP-2 Grafting for Early Loading in Dental Implant Surgery. TISSUE ENGINEERING AND REGENERATIVE MEDICIN, 2025,
[19] Sandra Sari D, Martin M, Maduratna E, Combination adipose-derived mesenchymal stem cells-demineralized dentin matrix increase bone marker expression in periodontitis rats. Saudi Dent J, 2023, 35(8).
[20] 陈华宇, 许海辰, 张宇. 牙本质基质颗粒大小及脱矿条件对其性能的影响 [J]. 口腔材料器械杂志, 2023(4): 235-239.
[21] Dłucik R, Orzechowska-Wylęgała B, Dłucik D, et al. Comparison of clinical efficacy of three different dentin matrix biomaterials obtained from different devices [J]. Expert Rev Med Devices, 2023, 20(10): 883-883.
[22] 程梦可, 杨杜娟, 刘佳. 牙本质基质在口腔组织缺损修复中的研究进展[J]. 现代口腔医学杂志, 2024, 38(3): 217-221.
[23] 胡常琦. 脱矿牙本质基质应用于位点保存及种植同期骨增量的影像学研究 [D]. 南昌大学, 2021.
[24] 刘一秀, 李真华, 龚靖淋, 等.自体牙骨粉应用于口腔颌面骨缺损的研究 [J].临床口腔医学杂志, 2018, 34(6): 375-377.
[25] Murata M, Nezu T, Takebe H, et al. Human dentin materials for minimally invasive bone regeneration: animal studies and clinical case [J]. J Oral Biosci, 2023, 65(1): 13-18.
[26] Matsuzawa Y, Okubo N, Tanaka S, et al. Primary teeth-derived demineralized dentin matrix autograft for unilateral maxillary alveolar cleft during mixed dentition [J]. J Funct Biomater, 2022, 13(3): 153.
[27] Kanazirski N, Kanazirska P. Auto-tooth bone graft material for reconstruction of bone defects in the oral region: case reports[J]. Folia Med(Plovdiv), 2022, 64(1): 162-168.
[28] Van Orten A, Goetz W, Bilhan H. Tooth-derived granules in combination with platelet-rich fibrin("sticky tooth")in socket preservation: a histological evaluation[J]. Dent J(Basel), 2022, 10(2): 29.
[29] Parvini P, Sahin D, Becker K, et al. Short-term outcomes of lateral extraction socket augmentation using autogenous tooth roots: a prospective observational study[J]. Clin Oral Implants Res, 2020, 3 1(9): 881-888.
[30] Kim MG, Lee J H, Kim G C, et al. The effect of autogenous tooth bone graft material without organic matter and type I collagen treatment on bone regeneration [J]. Maxillofacial Plastic and Reconstructive Surgery, 2021, 43(1).
[31] Elfanna A, Elkholy S, Saleh H A, et al. Alveolar Ridge Preservation using Autogenous Whole-Tooth versus Demineralized Dentin Grafts: A Randomized Controlled Clinical Trial [J]. Clinical Oral Implants Research, 2021.
[32] Kothari S, Ganesh B. Knowledge and Awareness of Autogenous Teeth Bone Grafting Material (AutoBt) Among Dental Students-A Survey [J]. journal of research in medical and dental science, 2022, 10(3): 142-149.
[33] Peceliunaite G, Pliavga V, Juodzbalys G. The Use of Autogenous Teeth Tissues Grafts for Alveolar Bone Reconstruction: a Systematic Review [J]. Journal of Oral & Maxillofacial Research, 2023, 14(4).
[34] Wu BZ, Zhang JY, Xu JY, et al. Effect of mineralized dentin matrix on the prognosis of bone defect and retained root after coronectomy. Clin Oral Investig. 2024 28(7): 375.
[35] Mahendra DA, Bilbalqish K, Nugraha AP, et al. Dentin-derived alveolar bone graft for alveolar augmentation: A systematic review. J Oral Biol Craniofac Res. 2024, 14(4): 395-406.
[36] Yang F, Ruan Y, Xiao lei, et al. Alveolar ridge preservation in sockets with severe periodontal destruction using autogenous partially demineralized dentin matrix: A randomized controlled clinical trial[J]. Clinical Implant Dentistry & Related Research, 2023, 25(6)..1019-1032.
[37] Magrin G, Letícia Daros Scarduelli, Rivero E, et al. Tomographic and Histologic Analysis of Different Socket Sealing Approaches for Alveolar Ridge Preservation: A Randomized Controlled Pilot Clinical Trial. [J]. The International journal of oral & maxillofacial implants, 2023, 38 2:, 226-238.
[38] Beldhi M, Penmetsa GS, Gottumukkala SNVS, et al. Evaluation and comparison of autologous particulate dentin with demineralized freeze dried bone allograft in ridge preservation procedures–a prospective clinical study [J]. Clinical Oral Investigations, 2024, 28(9).
[39] 孙娟斌, 刘海光, 柏宁, 等.自体牙本质颗粒与Bio-Oss骨粉植入治疗牙周骨缺损的临床观察 [J]. 口腔医学, 2016, 36(12): 11127-1131.
[40] 任文平, 孙瑗征, 张文静.自体牙本质颗粒联合Nd: YAG激光在前牙区牙周炎患者拔牙术后中的应用效果[J].医学临床研究, 2024, 41(8): 1156-1159+1163.
[41] Smith JG, Smith AJ, Shelton RM, et al. Antibacterial activity of dentine and pulp extracellular matrix extracts [J]. Int Endod J, 2012, 45(8): 749-755.
[42] Murata M, Kabir MA, Hirose Y, et al. Histological evidences of autograft of dentin/cementum granules into unhealed socket at 5 months after tooth extraction for implant placement [J]. J Funct Biomater, 2022, 13(2): 66.
[43] 李鹏, 祝慧聪, 潘婷, 等.自体牙本质颗粒应用于牙周炎患牙拔除后即刻种植1例 [J]. 口腔医学研究, 2019, 35(2): 197-198.
[44] 梁韩莹, 仲维剑, 马国武. 自体牙本质颗粒联合PRF在拔牙位点保存术中的应用1例 [J]. 实用口腔医学杂志, 2024, 40(01): 128-130.
[45] Peng Li, HuiCong Zhu, DaHong Huang. Autogenous DDM versus Bio-Oss granules in GBR for immediate implantation in periodontal postextraction sites: A prospective clinical study [J]. Clinical implant dentistry and related research, 2018, 20(6): 923-928.
Cite This Article
  • APA Style

    Peng, L., Xin, X., Huanbin, Z., Jing, S., Yuzhe, W., et al. (2025). Research Progress on the Application of Autogenous Demineralized Dentin Matrix Particles for the Regeneration in Periodontitis Alveolar Defect. Science Discovery, 13(1), 1-5. https://doi.org/10.11648/j.sd.20251301.11

    Copy | Download

    ACS Style

    Peng, L.; Xin, X.; Huanbin, Z.; Jing, S.; Yuzhe, W., et al. Research Progress on the Application of Autogenous Demineralized Dentin Matrix Particles for the Regeneration in Periodontitis Alveolar Defect. Sci. Discov. 2025, 13(1), 1-5. doi: 10.11648/j.sd.20251301.11

    Copy | Download

    AMA Style

    Peng L, Xin X, Huanbin Z, Jing S, Yuzhe W, et al. Research Progress on the Application of Autogenous Demineralized Dentin Matrix Particles for the Regeneration in Periodontitis Alveolar Defect. Sci Discov. 2025;13(1):1-5. doi: 10.11648/j.sd.20251301.11

    Copy | Download

  • @article{10.11648/j.sd.20251301.11,
      author = {Li Peng and Xiao Xin and Zhang Huanbin and Song Jing and Wang Yuzhe and Zhong Xiaojun and Xu Beibei},
      title = {Research Progress on the Application of Autogenous Demineralized Dentin Matrix Particles for the Regeneration in Periodontitis Alveolar Defect
    },
      journal = {Science Discovery},
      volume = {13},
      number = {1},
      pages = {1-5},
      doi = {10.11648/j.sd.20251301.11},
      url = {https://doi.org/10.11648/j.sd.20251301.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sd.20251301.11},
      abstract = {Demineralized Dentin Matrix (DDM) is derived from discarded human teeth and has a micro-nano structure with porous network. Its dentinal tubules are rich in various enzymes, antimicrobial peptides, and cytokines such as BMP, IGFs, TGF - β, VEGF, IGF, etc., which can guide various cells in the alveolar fossa to grow into the extraction socket and form new bone, which is used for the reconstruction of periodontal bone defects. DDM particles have the advantages of wide source, no immune rejection, simple production process, and low cost. As a new ideal bone material, it is expected to become a substitute for traditional materials on bone transplantation. In this paper, different methods and strategies for the regeneration of alveolar bone defects were summarized, such as bone replacement materials combined with barrier membrane, autologous blood clot, blood derivatives such as PRF and CGF, and other novel biological materials. Then, the physicochemical and biological properties of DDM granules, the improved manufacturing process and the research status of the regeneration of alveolar bone defects caused by periodontitis were reviewed. Finally, the limitations of DDM application and the future direction for DDM development were proposed, in order to expect more evidence-based medical evidence for the clinical application of DDM.
    },
     year = {2025}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Research Progress on the Application of Autogenous Demineralized Dentin Matrix Particles for the Regeneration in Periodontitis Alveolar Defect
    
    AU  - Li Peng
    AU  - Xiao Xin
    AU  - Zhang Huanbin
    AU  - Song Jing
    AU  - Wang Yuzhe
    AU  - Zhong Xiaojun
    AU  - Xu Beibei
    Y1  - 2025/03/18
    PY  - 2025
    N1  - https://doi.org/10.11648/j.sd.20251301.11
    DO  - 10.11648/j.sd.20251301.11
    T2  - Science Discovery
    JF  - Science Discovery
    JO  - Science Discovery
    SP  - 1
    EP  - 5
    PB  - Science Publishing Group
    SN  - 2331-0650
    UR  - https://doi.org/10.11648/j.sd.20251301.11
    AB  - Demineralized Dentin Matrix (DDM) is derived from discarded human teeth and has a micro-nano structure with porous network. Its dentinal tubules are rich in various enzymes, antimicrobial peptides, and cytokines such as BMP, IGFs, TGF - β, VEGF, IGF, etc., which can guide various cells in the alveolar fossa to grow into the extraction socket and form new bone, which is used for the reconstruction of periodontal bone defects. DDM particles have the advantages of wide source, no immune rejection, simple production process, and low cost. As a new ideal bone material, it is expected to become a substitute for traditional materials on bone transplantation. In this paper, different methods and strategies for the regeneration of alveolar bone defects were summarized, such as bone replacement materials combined with barrier membrane, autologous blood clot, blood derivatives such as PRF and CGF, and other novel biological materials. Then, the physicochemical and biological properties of DDM granules, the improved manufacturing process and the research status of the regeneration of alveolar bone defects caused by periodontitis were reviewed. Finally, the limitations of DDM application and the future direction for DDM development were proposed, in order to expect more evidence-based medical evidence for the clinical application of DDM.
    
    VL  - 13
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Teaching Laboratory, Affiliated Hospital of Foshan University, Foshan Stomatology Hospital, Foshan, China

    Biography: 李鹏(1978- ),男,博士,副教授/副主任医师,口腔实验室/特诊科,主要从事口腔颌面外科及口腔种植相关科教研工作,广东省佛山市禅城区河滨路5号佛山市口腔医院。

  • Department of Periodontology, Affiliated Hospital of Foshan University, Foshan Stomatology Hospital, Foshan, China

  • Teaching Office, Affiliated Hospital of Foshan University, Foshan Stomatology Hospital, Foshan, China

  • Teaching Office, Affiliated Hospital of Foshan University, Foshan Stomatology Hospital, Foshan, China

  • Teaching Laboratory, Affiliated Hospital of Foshan University, Foshan Stomatology Hospital, Foshan, China

  • Teaching Office, Affiliated Hospital of Foshan University, Foshan Stomatology Hospital, Foshan, China

  • Teaching Office, Affiliated Hospital of Foshan University, Foshan Stomatology Hospital, Foshan, China