Review Article | | Peer-Reviewed

Fermented African Locust Bean (Iru), a Potential Dietary Prebiotic and Probiotic

Received: 1 May 2024    Accepted: 20 May 2024    Published: 13 June 2024
Views:       Downloads:
Abstract

The fact that indigenous foods in Nigeria are always forgotten as possible dietary prebiotics and probiotics cannot be overemphasized, hence, there is need to bring to limelight the potentials of our indigenous foods that are potent prebiotics and probiotics. This is therefore a review of prebiotic and probiotic concept, food sources with emphasis on iru, fermented African locust bean. The search engines used for this study are; Google Scholar, AGORA and HINARI. The Galactose-oligosaccharide and arabinogalactan which are the prebiotics in African locust bean (Parkiabiglobosa) can be partially hydrolyzed in the course of fermentation of the bean into iru while the unhydrolyzed part acts as a prebiotic when the condiment is consumed. This makes iru a possible source of prebiotic. In the same vein Bacillus spp and Lactobacillus spp which are probiotics dominate the fermentation procedure in the production of iru and they were affirmed to be acid tolerant, thermotolerant, bile salt tolerant with appreciable or notable antibacterial activity against gastrointestinal pathogens. Fermented African locust bean, Iru, indeed has potentials of dietary prebiotic and probiotic, hence, its consumption should be optimally and maximally encouraged, popularized and publicized in order to harness the nutritious, aromatic and health benefits of this indigenous culinary condiment.

Published in International Journal of Nutrition and Food Sciences (Volume 13, Issue 3)
DOI 10.11648/j.ijnfs.20241303.16
Page(s) 114-125
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

African Locust Bean, Fermentation, Prebiotics, Probiotics

References
[1] Famuwagun A. A. and Taiwo K. A. (2023). Drying characteristics, nutritional and anti nutritional properties of locust bean seed. Cogent Food and Agriculture; 9(1): 2202276
[2] Yakubu C. M., Sharma R. and Sharma S. (2022a). Fermentation of locust bean (Parkiabiglobosa): modulation in the anti nutrient composition, bioactive profile, in vitro nutrient digestibility, functional and morphological characteristics. International Journal of Food Science + Technology; 57(2): 753-762.
[3] Oluwaniyi O. O. and Bazambo I. O. (2016). Nutritional and amino acid analysis of raw, partially fermented and completely fermented locust bean (Parkiabiglobosa) seeds. African Journal of Food, Agriculture, Nutrition and Development; 16(2): 2016
[4] Yakubu C. M., Sharma R., Sharma S. and Singh B. (2022b). Influence of alkaline fermentation time on in vitro nutrient digestibility, bio- and techno-functionality, secondary protein structure and macromolecular morphology of locust bean (Parkiabiglobosa) flour. LWT-Food Science and Technology; 161: 113295
[5] Rastall R. A. (2006). Galacto-oligosaccharides are prebiotic food ingredients. In: Prebiotics: Development and Application. Gibson G. R. and Rastall R. A (Eds). John Wiley & Sons Ltd, USA.
[6] Sims I. M. and Tannock G. W. (2020). Galacto-and Fructo-oligosaccharides utilized for growth by co-cultures of Bifidobacterial species characteristic of the infant gut. Applied and Environmental Microbiology; 86(11):
[7] Ambrogi V., Bottacini F., Cao L., Kuiper S. B., Schoterman M. and Sinderen D. (2021). Galacto-oligosaccharides as infant prebiotics: production, application, bioactive activities and future perspectives. Critical Reviews in Food Science and Nutrition; 63(6): 753-766.
[8] Vijayasarathy M., Prabhu Y. A., Pavithra S., Prabha S. J. and Rao T. J. M. (2022). Immune response of Fructo and Galacto-oligosaccharides. In: Prebiotics and Probiotics in Disease Regulation and Management- Kesharwani, Rao T. J. M. and Keservani R. K. (Eds). WILEY online library
[9] Mei Z., Yuan J. and Li Dandan (2022). Biological activity of galacto-oligosaccharides: A review. Frontiers in Microbiology; 13
[10] Gowrishankar S., Kamaladevi A. and Pandian S. K. (2021). Prebiotics mechanisms of action: An overview. In: Advances in Probiotics Microorganisms in Food and Health. Chapter 9 pgs 137-148. Academic Press, USA.
[11] Zyl W. F., Deane S. M. and Dicks L. M. T. (2020). Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes; 12(1):
[12] Mazziota C., Tognon M., Martini F., Torreggiani E. and Rotondo J. C. (2023). Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells; 12(1): 184
[13] Cichouska P. and Ziarno M. (2022). Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics. Microorganisms; 10(1):
[14] Campbell-Pratt G. (1980). African locust bean (Parkia species) and its West African fermented food product, dawadawa. Ecology, Food and Nutrition; 9: 123-132.
[15] Ariyo O. C. (2023). Economic analyses of traditional processing of African locust beans (Parkiabiglobosa, Jacq. Benth) seeds in Kaduna metropolis, Kaduna state, Nigeria. Ethiopian Journal of Environmental Studies and Management; 16(4): 415-426.
[16] Olatoye K. K., Irondi E. A., Awoyale W. and Adeyemo O. I. (2023). Nutrient composition, antioxidant properties and sensory characteristics of instant kunu from pearl millet supplemented with African locust bean pulp. Journal of Ethnic Foods; 10(21):
[17] Olaniran A. F., Okonkwo C. E., Erinle O. C., Owolabi O. A., Ojediran J. O. and Olayanju T. A. (2020). Optimum boilib duration and its effect on nutritional quality and acceptability of mechanically dehulled unfermented locust bean seeds. Preventive Nutrition and Food Science; 25(2): 219-224.
[18] Odunfa S. A. (1983). Carbohydrate changes in fermenting locust bean (Parkiafilicoidea) during iru preparation. Plant Foods for Human Nutrition; 32(3-10);
[19] Ikhimalo O. P. (2019). African locust beans: more than just a condiment. Journal of Underutilized Legumes; 1(1): 99-111.
[20] Chinma C. E., Ezeocha V. C., Adedeji O. E., Inyang C. U., Enijiugba V. N. and Adebo O. A. (2023). African legume, pulse and oil seed-based fermented products. In: Indigenous fermented foods for the tropics. Academic Press, USA. Chapter 5 pp 73-84.
[21] Gibson G. R., Scott K. P., Rastall R. A., Tuohy K. M., Hotchkiss A., Dubert-Ferranden A., Gareau M., Murphy E. F., Saulnieriloh G. et al., (2010). Dietary prebiotics: Current status and new definition. Food Science and Technology Bulletin; 7: 1-19.
[22] Louis P., Flint H. J. and Michel C. (2016). How to manipulate the microbiota: Prebiotics. In: Microbiota of the human body. Springher, Switzerland, pp 119-142.
[23] Scott K. P., Martin J. C., Duncan S. H. and Flint H. J. (2014). Prebiotic stimulation of human colonic butyrate-producing bacteria and bifidobacteria, in vitro. FEMS Microbiology Ecology; 87: 30-40.
[24] Fuentes-Zaragoza E., Sanchez-Zapata E., Sendra E., Sayas E., Navarro C., Frenandez-Lopez J. and Perez-Alvarez J. A. (2011). Resistant starch as prebiotic: A review. Starch-Starke; 63: 406-415.
[25] Ze X., Duncan S. H., Louis P. and Flint H. J. (2012). Ruminococcusbromii is a keystone species for the degradation of resistant starch in the human colon. International Society for Microbial Ecology Journal; 6: 1535-1543.
[26] Tzounis X., Rodriguce-Mateos A., Vulevic J., Gibson G. R., Kwik-Uribe C. and Spencer J. P. (2011). Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. American Journal of Clinical Nutrition; 93: 62-72.
[27] Lordan C., Thapa D., Ross R. P. and Cotter P. D. (2020). Potential for enriching next generation health-promoting gut bacteria through prebiotics and other dietary components. Gut Microbes; 11(1): 1-20.
[28] Fei Y., Chen Z., Han S., Zhang S., Zhang T., Lu Y., Berglund B., Xiao H. Li L. and Yao M. (2023). Role of prebiotics in enhancing the function of next-generation probiotics in gut microbiota. Critical Reviews in Food Science and Nutrition; 63(8): 1037-1054.
[29] Wang S., Xiao Y., Tian F., Zhao J., Zhang H., Zhai Q. and Chen W. (2020). Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. Journal of Fermented Foods; 66: 103838
[30] Ashaolu T. J., Ashaolu J. O. and Adeyeye S. A. O. (2021). Fermentation of prebiotics by human colonic microbiota in vitro and short-chain fatty acids production: a critical review. Journal of Applied Microbiology; 130(3): 677-687.
[31] Bedu-Ferrari C., Biscarrat P., Langella P. and Cherbuy C. (2022). Prebiotics and the human gut microbiota: from breakdown mechanism to the impact on metabolic health. Nutrients; 14(10): 2096
[32] Wilson B. and Whelan K. (2017). Prebiotic inulin-type fructans and galacto-oligosaccharides: Definition, specificity, function and application in gastrointestinal disorders. Journal of Gastroenterology and Hepatology; 32: 64-68.
[33] Mahdavi M., Laforest-Lapointe I and Masse E. (2021). Preventing colorectal cancer through prebiotics. Microorganisms 9(6): 1325
[34] Candela M., Guidotti M., Fabbri A., Brigidi P., Franceschi C. and Florentini C. (2011). Human intestinal microbiota: Crosstalk with the host and its potential role in colorectal cancer. Critical Reviews in Microbiology; 37: 1-14.
[35] Kim S. H. and Lim Y. J. (2022). The role of microbiome in colorectal carcinogenesis and its clinical potential as a target for cancer treatment. Intestinal Research; 20(1): 31-42.
[36] Li C., Niu Z., Zou M., Liu S., Wang M., Gu X., Lu H., Tian H. and Jha R. (2020). Probiotics, prebiotics and synbiotics regulate the intestinal microbiota differentially and restore the relative abundance of specific gut microorganisms. Journal of Dairy Science; 103(7): 5816-5829.
[37] Xu D., Feng M., Chu Y., Wang S., Shete V., Tuohy K. M., Liu F., Zhou X., Kamil A., Pan D., Liu H., Yang X., Yang C., Zhu B., Lv N., Xiong Q., Wang X., Sun J., Sun G. and Yang Y. (2021). The prebiotic effects of oats on blood lipids, gut microbiota and short-chainfatty acids in mildly hypercholesterolemic subjects compared with rice: A randomized controlled trial. Frontiers in Immunology; 12:
[38] Zhang D., Jian Y. P., Zhang Y. N., Li Y., Gu L. T., Sun H. H., Liu M. D., Zhou H. L., Wang Y. S. and Xu Z. X. (2023). Short-chain fatty acids in diseases. Cell Communication and Signaling; 21(212):
[39] Carlson J. L., Erickson J. M., Lloyd B. B. and Slavin J. L. (2018). Health effect and sources of prebiotic dietary fiber. Current Developments in Nutrition; 2(3): nzy005
[40] Gaman A. and Kuo B. (2008). Neuromodulatory processes of the brain-gut axis. Neuromodulation; 11: 249-259.
[41] Forsythe P., Bienenstock J. and Kunze W. A. (2014). Vagal pathways for microbiome-brain gut axis communication. In: Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Springer, New York, USA. pp115-133.
[42] Williams S., Chen L., Savignac H. M., Tzortzis G., Anthony D. C. and Burnet P. W. (2016). Neonatal prebiotic (bgos) supplementation increases the levels of synaptophysin, glun2a-subunits and bdnf proteins in the adult rat hippocampus. Synapse; 70: 121-124.
[43] Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X. N., Kubo C. and Koga Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. Journal of Physiology; 558: 263-275.
[44] Savignac H. M., Corona G. and Burnet P. W. (2013). Prebiotic feeding elevates central brain derived neurotrophic factor, n-methyl-d-aspartate receptor subunits and d-serine. Neurochemistry International; 63: 756-764.
[45] Gibson G. R., Hutkins R., Sanders M. E., Prescott S. L., Reimer R. A., Salminen S. J., Scott K., Swanson K. S., Cani P. D., et al.,(2017). Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus statement on the Definition and scope of Prebiotics. Nature Review on Gastroenterology and Hepatology; 14: 491-502.
[46] Roberfroid M., Gibson G. R., Hoyles L., McCartney A. L., Rastall R., Rowland I., Wolvers D., Watzi B., Szajewska H., Stahl B., et al., (2010). Prebiotic effects: Metabolic and health benefits. British Journal of Nutrition; 104: S1-S63.
[47] Louis P. and Flint H. J. (2017). Formation of propionate and butyrate by the human colonic microbiota. Environmental Microbiology; 19: 29-41.
[48] Reid G. (2016). Probiotics: definition, scope and mechanisms of action. Best Practice and Research Clinical Gastroenterology; 30(1): 17-25.
[49] Crismondo M. R., Drago L. and Lombardi A. (1999). Review of probiotics available to modify gastrointestinal flora. International Journal of Antimicrobial Agents; 12: 287-292.
[50] Chow J. (2002). Probiotics and prebiotics: A brief overview. Journal of Renal Nutrition; 12: 76-86.
[51] Shah N. P. (2007). Functional cultures and health benefits. International Dairy Journal; 17: 1262-1277.
[52] da Silva M. N., Tagiliapietra B. L., Flores V. A. and Richards N. S. P. S. (2021). In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Current Research in Food Science; 4: 320-325.
[53] Feng T. and Wang J. (2020). Oxidative stresstolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes; 12(1):
[54] Desan R., Mudana S. O., Julyanto C. M. P., Purnana E. T., Sugata M., Jo J. and Tan T. J. (2024). Isolation and identification of Bifidobacterium species from humanbreast milk and infant feces in Indonesia. Biodiversitas Journal of Biological Diversity; 25(1):
[55] Demirok N. T., Durak M. Z. and Arici M. (2022). Probiotic lactobacilli in faeces of breastfed babies. Food Science and Technology; 42:
[56] Bazirch H., Shariati P., Jamlkandi S. A., Ahmadi A. and Boroumand M. A. (2020). Isolation of novel probiotic Lactobacillus and Enterococcus strains from human salivary and fecal sources. Frontiers in Microbiology; 11-2020
[57] Liu w., Chen M., Duo L., Wang J., Guo S., Sun H., Menghe B. and Zhang H. (2020). Characterization of potentially probiotic lactic acid bacteria and bifidobacteria isolated from human colostrums. Journal of Dairy Science; 103(5): 4013-4025.
[58] Lin H. W., Lee H. L., Shen T. J., Ho M. T., Lee Y. J., Wang I., Lin C. P. and Chang Y. Y. (2024). Pb(NO3)2 induces cell apoptosis through triggering of reactive oxygen species accumulation and disruption of mitochondrial function via SIRT3/SOD2 pathways. Environmental Toxicology; 39(3): 1294-1302.
[59] Chen P. H., Lu H. K., Renn T. Y., Chang T. M., Lee C. J., Tsao Y. T., Chuang P. K. and Liu J. F. (2024). Plumbagin induces reactive oxygen speciesandendosplasmic reticulum stress-related cell apoptosis in human oral squamous cell carcinoma. Anticancer Research; 44(3): 1173-1182.
[60] Li B., Pan L. L. and Sun J. (2022). Novel probiotic lactic acid bacteria were identified from healthy infant feces and exhibited anti-inflammatory capacities. Antioxidants; 11(7): 1246
[61] Li W., Gao L., Huang W., Ma Y., Muhammed I, Hanif A., Ding Z. and Guo X. (2022). Antioxidant properties of lactic acid bacteria isolated from traditional fermented yak milk and their probiotic effects on the oxidative senescence of Caenorhabditiselegans. Food and Function; 13(6): 3690-3703.
[62] Zheng Y., Zhang Z., Tang P., Wu Y., Zhang A., Li D., Wang C. Z., Wan J. Y., Yao H. and Yuan C. S. (2023). Probiotics fortify intestinal barrier function: a systematic review and meta-analysis of randomized trials. Frontiers in Immunology; 14-2023
[63] Begum J., Buyamayum B., Lingaraju M. C., Dev K. and Biswas A. (2021). Probiotics: Role in immunomodulation and consequent effects. Letters in Animal Biology; 1(1): 53
[64] Fijan S. (2023). Probiotics and their antimicrobial effect. Microorganisms; 11(2): 528
[65] Cappello C., Tlais A. Z. A., Acin-Albiac M., Junior W. J. F. L., Pinto D., Filannino P., Rinaldi F., Gobbetti M. and Cagno R. D. (2023). Identification and selection of prospective probiotics for enhancing gastrointestinal digestion: application in pharmaceutical preparations and dietary supplements. Nutrients; 15(6): 1306
[66] Varvara R. A. and Vodnar D. C. (2024). Probiotic-driven advancement: exploring the intricacies of mineral absorption in the human body. Food Chemistry: X; 21: 101067
[67] Zhang Y., Zheng T., Ma D., Shi P., Zhang H., Li J. and Sun Z. (2023). Probiotics Bifidobacteriumlactis M8 and Lactobacillus rhamnosus M9 prevent high blood pressure via modulating the gut microbiota composition and host metabolic products. Msystems; 8(6): e00331-23.
[68] Dasriya V. L., Samtiya M., Ranver S., Dhillon H. S., Devi N., Sharma V., Nikam P., Puniya M., Chaudhary P., Chaudhary V., et al., (2024). Modulation of gut microbiota through probiotics and dietary interventions to improve host health. Journal of the Science of Food and Agriculture:
[69] FAO/WHO (2006). Probiotics in food- Health, nutritional properties and guidelines for evaluation. FAO Food and Nutrition paper 85 www.fao.org/3/a0512e/a0512e.pdf
[70] Caballero V., Maughan L., Bolton D. and Celayeta J. M. F. (2024). Modelling and dynamics of microbial populations and Salmonalla spp. in milk kefir. Food and Bioproducts Processing; 145: 217-225.
[71] Garofalo C., Ferrocino I., Reale A., Sabbatini R., Milanovic V., Alkic-Subasic M., Boscaino F., Aquilanti L., Pasquini M., Trombetta M. F., Tavoletti S., Coppola R., Cocolin L., Blesic M., Saric Z., Clementi F. and Osimani A. (2020). Study of kefir drinks produced by backslopping method using kefir grains from Bosnia and Herzegovina: microbial dynamics and volatilome profile. Food Research International; 137
[72] Prado M. R., Blandon L. M., Vandenberghe L. P. S., Rodrigues C., Castro G. R., Thomaz-Soccol V. and Soccol C. R. (2015). Milk kefir: composition, microbial cultures, biological activities and related products. Frontiers in Microbiology; 6
[73] Touret T., Oliveira M. and Semedo-Lemsaddek T. (2018). Putative probiotic lactic acid bacteria isolated from sauerkraut fermentations. PloS ONE
[74] Saeed F., Afzaal M., Shah Y. A., Khan M. H., Hussain M., Ikram A., Ateeq H., Noman M., Saewan S. A. and Khashroum A. O. (2022). Miso: a traditional nutritious and health-endorsing fermented product. Food Science and Nutrition; 10(12): 4103-4111.
[75] Allwood J. G., Wakeling L. T. and Bean D. C. (2021). Fermentation and the microbial community of Japanese koji and miso; 86(6): 2194-2207.
[76] Zielinski H., Surma M. and Zielinska D. (2017). Frias J., Martinez-Villaluenga C. and Penas E. (Eds). The naturally fermented sour pickled cucumbers. In: Fermented foods in Health and Disease Prevention. Academic Press. Chapter 21, pp 503-516. USA.
[77] Aboh M. I. and Oladosu P. (2014). Microbiological assessment of kunu-zaki marketed in Abuja Municipal Area Council (AMAC) in the Federal Capital Territory (FCT), Nigeria. African Journal of Microbiological Research; 8: 1633-1637.
[78] Ndukwe J. K., Aduba C. C., Ughamba K. T., Chukwu K. O., Eze C. N., Nwaiwu O. and Onyeaka H. (2023). Diet diversification and priming with kunu: an indigenous probiotic cereal-based non alcoholic beverage in Nigeria. Beverages; 9(1): 14
[79] Ekwem O. H. and Okolo B. N. (2017). Microorganisms isolated during fermentation of sorghum for production of Akam (a Nigerian fermented gruel). Microbiological Research Journal International; 21: 1-5.
[80] Chukwuemeka A. E., Igwillo U. C. and Aigboje O. (2019). Identification and characterization of Lactobacillus isolates recovered from locally fermented milk (nunu) consumed within Lagos Metropolis. International Journal of Recent Research in Life Sciences; 6(1): 38-45.
[81] Akabanda F., Owusu-Kwarteng J., Glover R. L. K. and Tano-Debrah K. (2010). Microbiological characteristics of Ghanian traditional fermented milk product, Nunu. Nature and Science; 8(9): 178-187.
[82] Ayodeji B. D., Piccirillo C., Ferraro V., Moreira P. R., Obadina A. O., Sanni L. O. and Pintado M. M. E. (2017). Screening and molecular identification of lactic acid bacteria from gari and fufu and gari effluents. Annals of Microbiology; 67: 123-133.
[83] Fossi B. T. and Ndjouenkeu R. (2017). Probiotic potential of thermotolerant lactic acid bacteria isolated from ‘Gari’, a cassava-based African fermented food. Journal of Applied Biology and Biotechnology; 5(4):
[84] Afolayan A. O., Ayeni F. A. and Ruppitsch W. (2017). Antagonistic and quantitative assessment of indigenous lactic acid bacteria in different varieties of ogi against gastrointestinal pathogens. The Pan African Medical Journal; 27: 22
[85] Oyetayo V. O. and Osho B. (2004). Assessment of probiotic properties of a strain of Lactobacillus plantarum isolated from fermenting corn (ogi). Food, Agriculture and Environment; 2(1): 132-134.
[86] AfolayanO. A. and Ayeni F. A. (2017). Antagonistic effects of three lactic acid bacterial strains isolated from Nigerian indigenous fermented Ogi on E.coli EKT004 in co-culture AKJournals.
[87] Kwasi R. E., Aremu I. G., Dosunmu Q. A. and Ayeni F. A. (2019). Viability of lactic acid bacteria in different components of ogi with anti diarrhoeagenicE.coli activities. The North African Journal of Food and Nutrition Research; 3(6):
[88] Olanbiwoninu A., Deborah E., Ayooluwa O., Awotundun T. and Fasiku S. (2022). Probiotic capability of Bacillus spp. isolated from Iru- fermented African locust bean (Parkiabiglobosa). EC Microbiology; 18(6): 18-30.
[89] David O. M., Olagunju J. I., Adebayo A. A., Oluwaniyi T. T. and Olajide M. O. (2016). Probiotic properties and antibiotic resistance pattern of Bacillus spp. isolated from two types of fermented locust bean (iru). British Biotechnology Journal; 10(4): 1-12
[90] Osho A., Mabekoje O. O. and Bello O. O. (2010). Comparative study on the microbial load of Gari, Elubo-isu and Iru in Nigeria. African Journal of Food Science; 4(10): 646-649.
[91] Nwagu T. N., Ugwuodo C. J., Onwosi C. O., Inyima O., Uchendu O. C. and Akpuru C. (2020). Evaluation of the probiotic attributes of Bacillus strains isolated from traditional fermented African locust bean seed (Parkiabiglobosa), “daddawa”. Annals of Microbiology; 70(20):
[92] Kuti K., Hussaini A., Usman A. and Isa A. (2021). Isolation of Lactobacillus species from fermented Parkiabiglobosa seed and screening for their probiotic activity. Agricultural Science and Technology; 13(2): 212-216.
[93] Oguntimehin M. O., Fagbemi S. A., Ojo O. D., Adisa A. M., Rotifa O. J. and Enujiugha V. N. (2023). Response of Bacillus subtilis to salt and acid stresses and the optimal effect on fermentation of locust bean (Parkiabiglobosa) seeds into iru (a soup condiment). IPS Journal of Applied Microbiology and Biotechnology; 2(1): 20-28.
[94] Atere A. V., Adedeji A., Akinmoladun A. C., Oyetayo Y. O. and Akinyosoye F. A. (2020). Local condiment, iru, obtained from the fermentation of Parkiabiglobosa seed substantially reduced the serum cholesterol level of Wistar rats. Preventive Nutrition and Food Science; 25(2): 153-157.
[95] Ayo-Lawal R. A., Osoniyi O., IlevbareO. E. andEkpo O. (2020). Cytotoxic effects of fermented African locust bean seeds on a breast cancer cell. Innovare Journal of Health Sciences; 8(3): 1-4.
[96] Ouoba L. I. I., Diawara B., Christensen T., Mikkelsen J. D. and Jakobsen M. (2007). Degradation of polysaccharides and non-digestible oligosaccharides by Bacillus subtilis and Bacillus pumilus isolated from Soumbala, a fermented African locust bean(Parkiabiglobosa ) food condiment. European Food Research and Technology; 224: 689-694.
[97] Odunfa S. A. (1985). Biochemical changes in fermenting African locust bean (Parkiabiglobosa) during iru fermentation. International Journal of Food Science + Technology; 20(3): 295-303.
Cite This Article
  • APA Style

    Adeniyi, P. O. (2024). Fermented African Locust Bean (Iru), a Potential Dietary Prebiotic and Probiotic. International Journal of Nutrition and Food Sciences, 13(3), 114-125. https://doi.org/10.11648/j.ijnfs.20241303.16

    Copy | Download

    ACS Style

    Adeniyi, P. O. Fermented African Locust Bean (Iru), a Potential Dietary Prebiotic and Probiotic. Int. J. Nutr. Food Sci. 2024, 13(3), 114-125. doi: 10.11648/j.ijnfs.20241303.16

    Copy | Download

    AMA Style

    Adeniyi PO. Fermented African Locust Bean (Iru), a Potential Dietary Prebiotic and Probiotic. Int J Nutr Food Sci. 2024;13(3):114-125. doi: 10.11648/j.ijnfs.20241303.16

    Copy | Download

  • @article{10.11648/j.ijnfs.20241303.16,
      author = {Paulina Oludoyin Adeniyi},
      title = {Fermented African Locust Bean (Iru), a Potential Dietary Prebiotic and Probiotic
    },
      journal = {International Journal of Nutrition and Food Sciences},
      volume = {13},
      number = {3},
      pages = {114-125},
      doi = {10.11648/j.ijnfs.20241303.16},
      url = {https://doi.org/10.11648/j.ijnfs.20241303.16},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijnfs.20241303.16},
      abstract = {The fact that indigenous foods in Nigeria are always forgotten as possible dietary prebiotics and probiotics cannot be overemphasized, hence, there is need to bring to limelight the potentials of our indigenous foods that are potent prebiotics and probiotics. This is therefore a review of prebiotic and probiotic concept, food sources with emphasis on iru, fermented African locust bean. The search engines used for this study are; Google Scholar, AGORA and HINARI. The Galactose-oligosaccharide and arabinogalactan which are the prebiotics in African locust bean (Parkiabiglobosa) can be partially hydrolyzed in the course of fermentation of the bean into iru while the unhydrolyzed part acts as a prebiotic when the condiment is consumed. This makes iru a possible source of prebiotic. In the same vein Bacillus spp and Lactobacillus spp which are probiotics dominate the fermentation procedure in the production of iru and they were affirmed to be acid tolerant, thermotolerant, bile salt tolerant with appreciable or notable antibacterial activity against gastrointestinal pathogens. Fermented African locust bean, Iru, indeed has potentials of dietary prebiotic and probiotic, hence, its consumption should be optimally and maximally encouraged, popularized and publicized in order to harness the nutritious, aromatic and health benefits of this indigenous culinary condiment.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Fermented African Locust Bean (Iru), a Potential Dietary Prebiotic and Probiotic
    
    AU  - Paulina Oludoyin Adeniyi
    Y1  - 2024/06/13
    PY  - 2024
    N1  - https://doi.org/10.11648/j.ijnfs.20241303.16
    DO  - 10.11648/j.ijnfs.20241303.16
    T2  - International Journal of Nutrition and Food Sciences
    JF  - International Journal of Nutrition and Food Sciences
    JO  - International Journal of Nutrition and Food Sciences
    SP  - 114
    EP  - 125
    PB  - Science Publishing Group
    SN  - 2327-2716
    UR  - https://doi.org/10.11648/j.ijnfs.20241303.16
    AB  - The fact that indigenous foods in Nigeria are always forgotten as possible dietary prebiotics and probiotics cannot be overemphasized, hence, there is need to bring to limelight the potentials of our indigenous foods that are potent prebiotics and probiotics. This is therefore a review of prebiotic and probiotic concept, food sources with emphasis on iru, fermented African locust bean. The search engines used for this study are; Google Scholar, AGORA and HINARI. The Galactose-oligosaccharide and arabinogalactan which are the prebiotics in African locust bean (Parkiabiglobosa) can be partially hydrolyzed in the course of fermentation of the bean into iru while the unhydrolyzed part acts as a prebiotic when the condiment is consumed. This makes iru a possible source of prebiotic. In the same vein Bacillus spp and Lactobacillus spp which are probiotics dominate the fermentation procedure in the production of iru and they were affirmed to be acid tolerant, thermotolerant, bile salt tolerant with appreciable or notable antibacterial activity against gastrointestinal pathogens. Fermented African locust bean, Iru, indeed has potentials of dietary prebiotic and probiotic, hence, its consumption should be optimally and maximally encouraged, popularized and publicized in order to harness the nutritious, aromatic and health benefits of this indigenous culinary condiment.
    
    VL  - 13
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Wageningen Center for Development Innovation, Wageningen University and Research, Wageningen, Netherlands

  • Sections