Research Article | | Peer-Reviewed

Antidiabetic and Antioxidant Effect of Ethanolic Extract of Propolis from Meiganga (Cameroon) on Type 2 Diabetes in Rats

Received: 9 December 2023     Accepted: 2 January 2024     Published: 20 February 2024
Views:       Downloads:
Abstract

Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia. In Cameroon, the traditional treatment of this pathology is based on the use of Propolis. The present study aims to evaluate the antidiabetic and antioxidant properties of the ethanoic extract of Meiganga propolis (Adamawa Region, Cameroon). To confirm the different properties of this extract, the glycaemia, lipid profile and oxidative stress parameters of different groups of animals were assessed in a type 2 diabetes model induced by the Hypercaloric Sucrose Diet combined with dexamethasone. Simultaneous administration of the ethanolic extract of Meiganga propolis (EEMP 300 mg/kg) and the hypercaloric sucrose diet to rats for 30 days prevented a significant increase in fasting blood glucose levels compared with animals in the diabetic control group, whose fasting blood glucose levels were 78.25 ± 2.29 and 156.5 ± 2.75 mg/dL respectively on day 30. In terms of lipid profile, the administration of propolis extract (300 mg/kg) prevented a significant increase in LDL-cholesterol and triglyceride levels compared with animals in the diabetic control groups. The values were 27±2.71 mg/dL and 97.8±2.92 mg/dL for LDL-cholesterol. In terms of oxidative stress, simultaneous administration of propolis extract (300 mg/kg) and a high calorie diet to rats for 30 days prevented a significant increase in malondialdehyde (MDA) and increased superoxide dismutase (SOD) levels compared with animals in the diabetic control group. Values for this superoxide dismutase in the liver were 81.72 U/g of organ for EEMP 300 mg/kg and 58.6 U/g of organ in the liver of diabetic rats. These results justify the use of ethanoic extract of Meiganga propolis in the prevention of type 2 diabetes in Cameroon.

Published in International Journal of Diabetes and Endocrinology (Volume 9, Issue 1)
DOI 10.11648/j.ijde.20240901.11
Page(s) 1-12
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Type 2 Diabetes, Oxidative Stress, Propolis, MACAPOS, Dexamethasone

References
[1] Edwin, E., Sheeja, E., Dhanabal, S. P. and Suresh, B. Antihyperglycaemic activity of Passiflora mollisima Baily. Indian J Pharm Sci. 2007, 69 (4), 570-571. https://doi.org/10.4103/0250-474X.36947
[2] International Diabetes Federation IDF Diabetes Atlas (10th Edition). 2021. https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf
[3] Dzudie, A., Fourie, M. J., Scholtz, W., Scarlatescu O., Nel G. and Kingue S. PASCAR and WHF Cardiovascular Diseases Scorecard project. Cardiovasc J Afr. 2020, 31 (2), 103-110. https://doi.org/10.5830/CVJA-2020-015
[4] Spinas Lehman Diabète Sucré: Diagnostic, Classification Et Pathogenèse. Forum Med Suisse. 2001, 20, 519-525. https://doi.org/10.4414/fms.2001.04147
[5] Bes-Rastrollo, M., Sayon-Orea, C., Ruiz-Canela, M. and Martinez-Gonzalez M. A. Impact of sugars and sugar taxation on body weight control: a comprehensive literature review. Obesity. 2016, 24 (7), 1410-1426. https://doi.org/10.1002/oby.21535
[6] Limón-Pacheco, J. and Gonsebatt, M. E. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutation Research/Genetic. Toxicology and Environmental Mutagenesis. 2009, 674 (1-2), 137-147. https://doi.org/10.1016/j.mrgentox.2008.09.015
[7] Halliwell B., Gutteridge J. M. C. Free radicals in Biology and medicine. 4th Ed. Oxford University Press. 2007, pp. 20-31.
[8] Pillon F., Tan K., Jouty P., and Frullani Y. Le traitement médicamenteux du diabète de type 2. Actualités Pharmaceutiques. 2014. 53 (541), 23–28. https://doi.org/10.1016/j.actpha.2014.10.005
[9] Gómez-Huelgas, R., Gómez, P. F., Rodríguez, M. L., Formiga F., Puig, D. M., Mediavilla, B. J. J., Miranda, C. and Ena, J. Treatment of type 2 diabetes mellitus in elderly patients. Rev Clínica Esp. 2018, 218 (2), 74-88. https://doi.org/10.1016/j.rce.2017.12.003
[10] Kancherla, V., Elliott, J. L., Patel, B. B., Holland, N. W., Johnson, T. M., Khakharia, A., Phillips, L. S., Oakley, Jr. G. P. and Vaughan, C. P.. Long-term metformin therapy and monitoring for vitamin B12 deficiency among older veterans. J Am Geriatr Soc. 2017, 65 (5), 1061-1066. https://doi.org/10.1111/jgs.14761
[11] Andersen, S. E. and Christensen M. Hypoglycaemia when adding sulphonylurea to metformin: a systematic review and network metaanalysis. Br J Clin Pharmacol. 2016, 82(5), 1291-1302. https://doi.org/10.1111/bcp.13059
[12] Seaquist, E. R., Miller, M. E., Fonseca, V., Ismail-Beigi, F., Launer, L. J., Punthakee, Z., Sood A. Effect of thiazolidinediones and insulin on cognitive outcomes in ACCORD MIND. J Diabetes Complications. 2013, 27 (5), 485-491. https://doi.org/10.1016/j.jdiacomp.2013.03.005
[13] Loke, Y. K., Singh, S., Furberg, C. D. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. Can Med Assoc J. 2009, 180 (1), 32-39. https://doi.org/10.1503/cmaj.080486
[14] Sokeng, S. D., Rokeya, B., Mostafa, M., Nahar, N., Mosihuzzaman, M., Ali, L. and Kamtchouing, P. Antihyperglycemic effect of bridelia ndellensis ethanol extract and fractions in streptozotocin induced diabetic rats. fr. J. Trad. CAM. 2005, 2 (2), 94 - 102. https://doi.org/10.4314/ajtcam.v2i2.31107
[15] Olubomehin, O. O., Abo, K. A., Ajaiyeoba, E. O. Alpha amylase inhibitory activity of two Anthocleista species and in vivo rat model anti-diabetic activities of Anthocleista djalonensis extracts and fractions. J. Ethnopharmacol. 2013, 146 (3), 811-814. https://doi.org/10.1016/j.jep.2013.02.007
[16] Şirin, Y., Çakırı, H. E., Can Z., Yıldız O., & Kolaylı S. BalArısı Zehrinin Karakterizasyonunda Sds-Page Elektroforez Kullanılabilirliğinin Araştırılması. Uludag Bee Journal. 2017, 16 (2), 49-56. https://doi.org/10.31467/uluaricilik.379483
[17] Marcucci, M. C. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie. 1995, 26 (2), 83-99. https://doi.org/10.1051/apido:19950202
[18] Bankova V. Chemical diversity of propolis and the problem of standardization. Journal of Etnopharmacology. 2005, 100 (2) 114-117. https://doi.org/10.1016/j.jep.2005.05.004
[19] Ahn, M. R., Kumazawa, S., Usui Y. Antioxidant activity and constituents of propolis collected in various areas of China. Food Chemistry. 2007, 101 (4), 1383-1392. https://doi.org/10.1016/j.foodchem.2006.03.045
[20] Ghisalberti, E. L. Propolis: a review. Bee World. 1979, 60 (2), 59-84. https://doi.org/10.1080/0005772X.1979.11097738
[21] Mbawala, A., Tchuenguem, F. F. N., Roger, D. and Millière, J. B. Spectra of antibacteria activity of propolis (Promax - C) samples from two localities of Adamaoua province (Cameroon). Research Journal of Microbiology. 2009. 4 (4), 150 – 157. https://doi.org/10.3923/jm.2009.150.157
[22] Kujumgiev, A., Tsvetkova, I., Serkedjieva, Y., Bankova, V., Christov, R., & Popov, S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. Journal of Ethnophar colgy. 1999, 64 (3), 235-240. https://doi.org/10.1016/S0378-8741(98)00131-7
[23] Kimoto, T., Aga, M., Hino, K., Koya-Miyata, S., Yamamoto, Y., Micallef, M. J., Hanaya, T., Arai, S., Ikeda, M., & Kurimoto, M. Apoptosis of human leukemia cells induced by Artepillin C, an active ingredient of Brazilian propolis. Anticancer Research. 2001, 21 (1A), 221-228.
[24] Burdock, G. A. Review of the biological properties and toxicity of bee propolis (propolis). Food and Chemical Toxicology. 1998, 36 (4), 347-363. https://doi.org/10.1016/S0278-6915(97)00145-2
[25] Fatiha F. Analyses physicochimiques de la propolis locale selon les étages bioclimatiques et les deux races d'abeille locales (Apis mellifica intermissa et Apis mellifica sahariensis). Memoire de Magister en Technologie Alimentaire, Université M'hamed Bougara Boumerdès, 2010.
[26] Adeneye, A. A & Olangunju, J. A. Antiperglycemic antihyperlypidemic and cardioprotective profile of bromocriptine, glibenclamide and metformin combinaison in dexamethasone -induced hyperglycemic rats. Pharmacologia. 2012, 3 (12), 665-671. https://doi.org/10.5567/pharmacologia.2012.665.671
[27] Ogawa, A., Johnson, J. H., Ohneida, M., Mc Alister, C. T., Inman, L., Alam, T. & Unger, R. H. Roles of insuline resistance and beta-cell dysfunction on dexamethasone-induced diabetes. Journal of Clinical Investigation. 1992, 90 (2), 497- 504. https://doi.org/10.1172/JCI115886
[28] Kamgang, R., Mboumi, R. Y., N'diilé, G. P. R., Yonkeu, J. N. Cameroon local diet-induced glucose intolerance and dyslipidemia in adult Wistar rat. Diabetes Research and Clinical Practice. 2005, 69 (3), 224-230. https://doi.org/10.1016/j.diabres.2005.02.005
[29] Reitman, S., Frankel, S. A colorimetric method for determination of serum glutamate oxaloacetate and glutamic pyruvate transaminase. Am. J. Clin. Pathol. 1957, 28 (1), 56-63. https://doi.org/10.1093/ajcp/28.1.56
[30] Bartels H., Cikes M., 1969. Uber Über chromogene der kreatininbestimmung nach JafféChromogens in the creatinine determination of Jaffé. Clin. chim. Acta. 26 (1) 1-10. https://doi.org/10.1016/0009-8981(75)90033-9
[31] Gornall, A., Bradwill, C. and David M. Determination of serum proteins by means of the biuret reaction. Journal of Biology and chemistry. 1949, 77 (2), 167-182. https://doi.org/10.1016/S0021-9258(18)57021-6
[32] Wills, E., Mechanisms of lipid peroxide formation in animal tissues. Biochem J. 1966, 99 (3), 667-676.
[33] Misra, H., Fridovish, I., 1972. Determination of the level of superoxide dismutase in whole blood. Yale University Press New Haven. 1972, 101-109.
[34] Ellman, G., Tissue sulfhydryl group. Archives of Biochemistry and Biophysics. 1959, 82 (1), 70-77. https://doi.org/10.1016/0003-9861(59)90090-6
[35] Sinha A. K. Colorimetric assay of catalase. Analytical Biochemistry. 1972, 47 (2), 389-394. https://doi.org/10.1016/0003-2697(72)90132-7
[36] Niroumand, S., Khajedaluee, M., Khadem, R. M., Abrishami, M., Juya, M., Khodaee G. and Maliheh Dadgarmoghaddam. Atherogenic Index of Plasma (AIP): A marker of cardiovascular disease. Med J Islam Repub Iran. 2015; 29: 240.
[37] Aruna, S. T., Rekha, R. S., Pawan, G. N., Jayesh, M., Nitesh, K., Mallikarjuna, C. R. and Gopalan, N. K. High Carbohydrate Diet with 30% Sucrose Solution: An Optimized Rodend Model for Simulating Human Insulin Resistance. Pharmacologia. 2013, 4 (3), 157-163. https://doi.org/10.5567/pharmacologia.2013.157.163
[38] Gupta, R., Bajpai, G. K., Johri, S., and Saxena, A. M. An Overview of Indian Novel Traditional Medicinal Plants with Antidiabetic Potentials. Afri. J. Trad. & Compl, Med. 2008, 5 (1), 1-17. https://doi.org/10.22270/ujpr.v6i3.601
[39] Ngounou, E. M. D., Mang, Y. D., Dongmo, F., Malla, O. W. I., Sokeng D. S., Njintang Y. N. (2021) Effect of the aqueous extract of Clerodendrum thomsoniae linn (verbenaceae) leaves on type 2 diabetic wistar rats induced by the MACAPOS1 type diet and dexamethasone. Universal Journal of Pharmaceutical Research. 2021, 6 (3), 9-16. https://doi.org/10.22270/ujpr.v6i3.601
[40] Djonra, M. Evaluation de l'activité de la propolis de Meiganga et du Promax-C sur le nématode parasite Onchocerca ochengi Bwangamoi 1969 (Spirurida: Onchocercidae). Mémoire de Master, Université de Ngaoundéré, 2019.
[41] Sulyman, A. O., Akolade, J. O., Sabiu, S. A., Aladodo, R. A., Muritala, H. F. Anti-diabetic potentials of ethanolic extract of Aristolochia ringens (Vahl.) roots. Journal of Ethnopharmacology. 2016, 182, 122-128. https://doi.org/10.1016/j.jep.2016.02.002
[42] Ghosh T., Maity T. K., Singh J. Anti-hyperglycemic activity of bacosine, a triterpene from Bacopa monnieri, in alloxan-induced diabetic rats. Planta Medica. 2011, 77 (8), 804-808. https://doi.org/10.1055/s-0030-1250600
[43] Grover, J. K., Yadav, S. Vats V. Medicinal plants of India with anti-diabetic potential. Journal of Ethnopharmacology. 2002, 81 (1), 81-100. https://doi.org/10.1016/S0378-8741(02)00059-4
[44] Romano, B., Pagano, E., Montanaro, V., Fortunato, A. L., Milic, Borrelli, F. Novel insights into the pharmacology of flavonoids. Phytotherapy Research. 2013, 27 (11), 1588-1596. https://doi.org/10.1002/ptr.5023
[45] Kennedy, D. O. Polyphenols and the human brain: plant secondary metabolite" ecologic roles and endogenous signaling functions drive benefits. Advances in Nutrition. 2014, 5 (5), 515-533. https://doi.org/10.3945/an.114.006320
[46] Shane-McWhorter L. Biological complementary therapies: A focus on botanical products in diabetes. Diabetes Spectrum. 2001, 14 (4), 199-208. https://doi.org/10.2337/diaspect.14.4.199
[47] Fofié, C. K., Nguelefack-Mbuyo, E. P., Tsabang, N., Kamanyi, A., & Nguelefack, T. B., Hypoglycemic Properties of the Aqueous Extract from the Stem Bark of Ceiba pentandra in Dexamethasone-Induced Insulin Resistant Rats. EvidenceBased Complementary and Alternative Medicine. 2018, 1-11. https://doi.org/10.1155/2018/4234981
[48] Chamadeu, M. C., Yefou, T. R., Takoukam, T. C., Zangue, B. C., Emambo, P., Dzeufiet D. P. D., and Dongmo A. B. Pterocarpus soyauxii Taub (Papilionaceae) Aqueous Stem Bark Extract Prevents Dexamethasone-induced Insulin Resistance and Oxidative Stress in Rat. Journal of Diseases and Medicinal Plants. 2022, 8 (1), 1-12. https://doi.org/10.11648/j.jdmp.20220801.11
[49] Nkono, B L., Sokeng, D. S., Dzeufiet, P D. D., & Kamtchouing, P. Antihyperglycemic and antioxidant properties of Alstonia boonei De Wild (Apocynaceae) stem bark aqueous extract in dexamethasone-induced hyperglycemic rats. International journal of diabetes research. 2014, 3 (3), 27-35. https://doi.org/10.5923/j.diabetes.20140303.01
[50] Oršolić, N., Sirovina, D., Končić, Z. M., Lacković G. and Gregorović G. Effect of Croatian propolis on diabetic nephropathy and liver toxicity in mice. BMC Complementary and Alternative Medicine. 2012, 12, 117-132. https://doi.org/10.1186/1472-6882-12-117
[51] Zhu, W., Li, Y. H., Chen, M. L. and Hu, F. L. Protective effects of Chinese and Brazilian propolis treatment against hepatorenal lesion in diabetic rats. Hum Exp Toxicol. 2011, 30(9), 1246-1255. https://doi.org/10.1177/0960327110387456
[52] El-Sayed, S. M., Abo-Salem, O. M., Aly H. and Mansour, A. M. Potential antidiabetic and hypolipidemic effects of propolis extract in streptozotocin-induced diabetic rats. Pak J Pharm Sci. 2009, 22 (2), 168-174.
[53] Ajayi, O., Fajemilehin, A., Dada, C., Awolusi, O. Effect of Tetrapleura tetraptera fruit on plasma lipid profile and enzyme activities in some tissues of hypercholesterolemic rats. Journal Of Natural Product and Plant Resource 2011, 1 (4), 47-55. https://doi.org/10.1021/np000393f
[54] Tran, Q. L., Adnyana, I. K., Tezuka, Y., Nagaoka, T., Tran, Q. K. and Kadota S. Triterpene saponins from Vietnamese ginseng (Panax vietnamensis) and their hepatocytoprotective activity. Journal of Natural Products. 2001, 64 (4), 456-461. https://doi.org/10.1021/np000393f
[55] Mehta, J. L, Rasouli, N., Sinha, A. K. & Molvi, B. Oxidative stress in diabetes: A mechanistic overview of its effects on atherogenesis and myocardial dysfunction. Int J Biochem Cell Biol. 2006, 38 (5-6), 794-803. https://doi.org/10.1016/j.biocel.2005.12.008
[56] Das, S., Bhattacharya, S., Prasanna A., Suresh, Pramanik, G., Haldar, P. K. Preclinical evaluation of antihyperglycemic activity of Clerodendron infortunatum leaf against streptozotocin-induced diabetic rats. Diabetes Therapy. 2011, 2 (2), 92-100, https://doi.org/10.1007/s13300-010-0019-z
[57] Rivera-Yañez, N., Rodriguez-Canales, M., Nieto-Yañez, O., Jiménez-Estrada, M., Ibarra-Barajas, M., Canales-Martinez, M. M. and Rodriguez-Monroy, M. A. (2018) Hypoglycaemic and Antioxidant Effects of Propolis of Chihuahua in a Model of Experimental Diabetes. Evid. Based Complement. Altern. Med., 4360356. https://doi.org/10.1155/2018/4360356a
Cite This Article
  • APA Style

    Beyssiri, D., Dongmo, F., Soudy, I. D., Mahamat, A. H., Ngimout, K. N., et al. (2024). Antidiabetic and Antioxidant Effect of Ethanolic Extract of Propolis from Meiganga (Cameroon) on Type 2 Diabetes in Rats. International Journal of Diabetes and Endocrinology, 9(1), 1-12. https://doi.org/10.11648/j.ijde.20240901.11

    Copy | Download

    ACS Style

    Beyssiri, D.; Dongmo, F.; Soudy, I. D.; Mahamat, A. H.; Ngimout, K. N., et al. Antidiabetic and Antioxidant Effect of Ethanolic Extract of Propolis from Meiganga (Cameroon) on Type 2 Diabetes in Rats. Int. J. Diabetes Endocrinol. 2024, 9(1), 1-12. doi: 10.11648/j.ijde.20240901.11

    Copy | Download

    AMA Style

    Beyssiri D, Dongmo F, Soudy ID, Mahamat AH, Ngimout KN, et al. Antidiabetic and Antioxidant Effect of Ethanolic Extract of Propolis from Meiganga (Cameroon) on Type 2 Diabetes in Rats. Int J Diabetes Endocrinol. 2024;9(1):1-12. doi: 10.11648/j.ijde.20240901.11

    Copy | Download

  • @article{10.11648/j.ijde.20240901.11,
      author = {Didier Beyssiri and Faustin Dongmo and Imar Djibrine Soudy and Alcherif Hamid Mahamat and Kidjama Ngo Ngimout and Selestin Sokeng Dongmo and Fernand-Nestor Tchuenguem Fohouo},
      title = {Antidiabetic and Antioxidant Effect of Ethanolic Extract of Propolis from Meiganga (Cameroon) on Type 2 Diabetes in Rats},
      journal = {International Journal of Diabetes and Endocrinology},
      volume = {9},
      number = {1},
      pages = {1-12},
      doi = {10.11648/j.ijde.20240901.11},
      url = {https://doi.org/10.11648/j.ijde.20240901.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijde.20240901.11},
      abstract = {Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia. In Cameroon, the traditional treatment of this pathology is based on the use of Propolis. The present study aims to evaluate the antidiabetic and antioxidant properties of the ethanoic extract of Meiganga propolis (Adamawa Region, Cameroon). To confirm the different properties of this extract, the glycaemia, lipid profile and oxidative stress parameters of different groups of animals were assessed in a type 2 diabetes model induced by the Hypercaloric Sucrose Diet combined with dexamethasone. Simultaneous administration of the ethanolic extract of Meiganga propolis (EEMP 300 mg/kg) and the hypercaloric sucrose diet to rats for 30 days prevented a significant increase in fasting blood glucose levels compared with animals in the diabetic control group, whose fasting blood glucose levels were 78.25 ± 2.29 and 156.5 ± 2.75 mg/dL respectively on day 30. In terms of lipid profile, the administration of propolis extract (300 mg/kg) prevented a significant increase in LDL-cholesterol and triglyceride levels compared with animals in the diabetic control groups. The values were 27±2.71 mg/dL and 97.8±2.92 mg/dL for LDL-cholesterol. In terms of oxidative stress, simultaneous administration of propolis extract (300 mg/kg) and a high calorie diet to rats for 30 days prevented a significant increase in malondialdehyde (MDA) and increased superoxide dismutase (SOD) levels compared with animals in the diabetic control group. Values for this superoxide dismutase in the liver were 81.72 U/g of organ for EEMP 300 mg/kg and 58.6 U/g of organ in the liver of diabetic rats. These results justify the use of ethanoic extract of Meiganga propolis in the prevention of type 2 diabetes in Cameroon.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Antidiabetic and Antioxidant Effect of Ethanolic Extract of Propolis from Meiganga (Cameroon) on Type 2 Diabetes in Rats
    AU  - Didier Beyssiri
    AU  - Faustin Dongmo
    AU  - Imar Djibrine Soudy
    AU  - Alcherif Hamid Mahamat
    AU  - Kidjama Ngo Ngimout
    AU  - Selestin Sokeng Dongmo
    AU  - Fernand-Nestor Tchuenguem Fohouo
    Y1  - 2024/02/20
    PY  - 2024
    N1  - https://doi.org/10.11648/j.ijde.20240901.11
    DO  - 10.11648/j.ijde.20240901.11
    T2  - International Journal of Diabetes and Endocrinology
    JF  - International Journal of Diabetes and Endocrinology
    JO  - International Journal of Diabetes and Endocrinology
    SP  - 1
    EP  - 12
    PB  - Science Publishing Group
    SN  - 2640-1371
    UR  - https://doi.org/10.11648/j.ijde.20240901.11
    AB  - Diabetes mellitus is a metabolic disorder characterized by chronic hyperglycemia. In Cameroon, the traditional treatment of this pathology is based on the use of Propolis. The present study aims to evaluate the antidiabetic and antioxidant properties of the ethanoic extract of Meiganga propolis (Adamawa Region, Cameroon). To confirm the different properties of this extract, the glycaemia, lipid profile and oxidative stress parameters of different groups of animals were assessed in a type 2 diabetes model induced by the Hypercaloric Sucrose Diet combined with dexamethasone. Simultaneous administration of the ethanolic extract of Meiganga propolis (EEMP 300 mg/kg) and the hypercaloric sucrose diet to rats for 30 days prevented a significant increase in fasting blood glucose levels compared with animals in the diabetic control group, whose fasting blood glucose levels were 78.25 ± 2.29 and 156.5 ± 2.75 mg/dL respectively on day 30. In terms of lipid profile, the administration of propolis extract (300 mg/kg) prevented a significant increase in LDL-cholesterol and triglyceride levels compared with animals in the diabetic control groups. The values were 27±2.71 mg/dL and 97.8±2.92 mg/dL for LDL-cholesterol. In terms of oxidative stress, simultaneous administration of propolis extract (300 mg/kg) and a high calorie diet to rats for 30 days prevented a significant increase in malondialdehyde (MDA) and increased superoxide dismutase (SOD) levels compared with animals in the diabetic control group. Values for this superoxide dismutase in the liver were 81.72 U/g of organ for EEMP 300 mg/kg and 58.6 U/g of organ in the liver of diabetic rats. These results justify the use of ethanoic extract of Meiganga propolis in the prevention of type 2 diabetes in Cameroon.
    
    VL  - 9
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, Ngaoundere, Cameroon

  • Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, Ngaoundere, Cameroon

  • Department of Biomedical and Pharmaceutical Sciences, Faculty of Human Health Sciences, University of Ndjamena, Ndjamena, Chad; Food Quality Control Center (CECOQDA), Ndjamena, Chad

  • Department of Biomedical and Pharmaceutical Sciences, Higher Institute of Sciences and Techniques of Abeche, Abeche, Chad

  • Department of Biological Sciences, Faculty of Sciences, University of Maroua, Maroua, Cameroon

  • Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, Ngaoundere, Cameroon

  • Department of Biological Sciences, Faculty of Sciences, University of Ngaoundéré, Ngaoundere, Cameroon

  • Sections