Applications of multicomponent reactions (MCRs) in the preparation of diverse types of heterocyclic compounds carries a unique place in chemical synthesis. Biginelli reaction, among the loop of multicomponent reactions, provide an efficient way to access of highly functionalized dihydropyrimidones (-thiones) (DHPMs). In the current study, we employed multicomponent Biginelli reaction to synthesis range of different dihydropyrimidones (-thiones) derivatives in variable yields. A solvent-free eco-friendly green protocol without any expensive catalyst has been optimized and expand to synthesize series of DHMPS in 34 to 72% yield. The optimized method proved to be successful with various types of different aromatic aldehydes, 1, 3-dicarbonyl compounds and urea (thiourea) under solvent and catalyst free condition to access dihydropyrimidones (thiones). Different spectroscopic techniques include NMR, FTIR etc. have used to confirm the structures of compounds. Further exploration of Biginelli reaction to prepare DHPMs and related compounds is under way in the lab and will be published in due course.
Published in | American Journal of Heterocyclic Chemistry (Volume 6, Issue 1) |
DOI | 10.11648/j.ajhc.20200601.11 |
Page(s) | 1-5 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2020. Published by Science Publishing Group |
Green Chemistry, 3, 4-Dihydropyrimidones, 3, 4-Dihydropyrimidothiones, Multi Component, Synthetic Methods, One pot, Catalyst Free Reactions
[1] | Rovnyak, G. C.; Kimball, S. D.; Beyer. B.; Cucinotta, G.; DiMarco, J. D.; Gougoutas, J.; Hedberg, A.; Malley, M.; McCarthy, J. P.; Zhang, R.; J. Med Chem. 1995, 38, 119. |
[2] | Kappe, C. O.; Fabian, W. M. F.; Semones, M. A. Tetrahedron Lett. 1997, 53, 2803. |
[3] | Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043. |
[4] | Overman, L. E.; Rabinowitz, M. H.; Renhowe, P. A.; J. Am. Chem Soc. 1995, 117, 2657. |
[5] | Ashok, D.; Patil, N.; Vasant K.; Wilhelmus, C. K.; Mark, F. B.; Alan, J. F.; Charles, D. B.; Shing, M.; Alemseged, T.; Brad, C.; J. Org. Chem. 1995, 60, 1182. |
[6] | Snider, B.; Chen, J.; Patil, A. D.; Freyer, A.; Tet. Lett. 1996, 37, 6977. |
[7] | Rao, A. V. R.; Gurjar, M. K.; Vasudevan, J.; J. Chem. Soc, Chem. Comm., 1995, 1369. |
[8] | Folkers, K.; Johnson, T. B.; J. Am. Chem. Soc. 1933, 7, 55, 2886. |
[9] | Folkers, K.; Johnson, T. B.; J. Am. Chem. Soc. 1933, 9, 55, 3784. |
[10] | Kappe, C. O.; J. Org. Chem. 1997, 62, 7201. |
[11] | Hu, E. H.; Sidler, D. R.; Dolling, U. H.; J. Org. Chem. 1998, 63, 3454. |
[12] | Ghafoor, A.; Sajid, N.; Mukhtar, A.; Ali, S.; Aslam, S.; Shahi, M. N.; Adnan, M.; Khan M. A.; Asian J. Chem. 2016, 28, 23. |
[13] | Karamat, A.; Khan, M. A.; Sharif, A.; J. Chin. Chem. Soc. 2010, 57, 1099. |
[14] | Imtiaz, S.; Khan, M. A.; Sharif, A.; Ahmad, E.; Lin, W. O.; Munawar, M. A.; J. Chin. Chem. Soc. 2012, 59, 1146. |
[15] | Zafar, A. M.; Qureshi, S.; Khan, M. N.; Azad, M.; Munawar, M. A.; Khan, M. A.; Asian J. Chem.; 2013, 25, 3244. |
[16] | Noreen, S.; Perveen, S.; Khan, M. N.; Nazeer, A.; Khan, M. A.; Munawar, M. A. Babar, R.; Sohail, F.; Azad, M.; Bernardino, A. M. R.; Dos Santos, M. S.; Asian J. Chem. 2013, 25, 4770. |
[17] | Nazeer, A.; Ain, Q.; Kanwal, F.; Khan, M. N.; Perveen, S.; Amina, H.; Lin, W. O.; Uzzaman, A.; Adnan, M.; Khan, M. A.; Affinidad. 2015. 72, 60. |
[18] | Hatamjafari, F.; Nezhad, F. G.; Orient. J. Chem. 2014. 30, 355. |
[19] | Fringuelli, F.; Girotti, R.; Piermatti, O.; Pizzo, F.; Vaccaro, L.; Org. Lett. 2006, 8, 5741. |
[20] | Aridoss, G.; Jeong, Y. T.; Bull. Korean Chem. Soc. 2010. 31, 863. |
[21] | Lu, J.; Bai, Y.; Synthesis. 2002, 4, 466. |
[22] | Salehi, P.; Dabiri, M.; Zolfigol, M. A.; Fard, M. A.; Tet. Lett. 2003, 44, 2889. |
[23] | zizian, J.; Mohammadi, A. A.; Karimi, A. R.; Mohammadizadeh, M. R..; Appl. Catal. A. 2006, 300, 85. |
[24] | Russowsky, D.; Lopes, F. A.; Da Silva, V. S. S.; Canto, K. F. S.; D'Oca, M. G. M.; Godoi. M. N.; J. Braz. Chem. Soc.; 2004 15, 165. |
[25] | Wang, L.; Qian, C.; Tian, H.; Ma, Y.; Syn. Comm. 2003, 33, 1468. |
[26] | Su, W.; Li, J.; Zheng, Z.; Shen, Y.; Tet. Lett. 2005, 46, 6037. |
[27] | Bose, D. S.; Fatima, L.; Mereyala, H. B.; J. Org. Chem. 2003, 68, 587. |
APA Style
Abdul Ghafoor, Naved Sajid, Muhammad Adnan, Muhammad Naeem Khan, Amin Abid, et al. (2020). Green Protocol for the Synthesis of Catalyst Free Biginelli Products. American Journal of Heterocyclic Chemistry, 6(1), 1-5. https://doi.org/10.11648/j.ajhc.20200601.11
ACS Style
Abdul Ghafoor; Naved Sajid; Muhammad Adnan; Muhammad Naeem Khan; Amin Abid, et al. Green Protocol for the Synthesis of Catalyst Free Biginelli Products. Am. J. Heterocycl. Chem. 2020, 6(1), 1-5. doi: 10.11648/j.ajhc.20200601.11
AMA Style
Abdul Ghafoor, Naved Sajid, Muhammad Adnan, Muhammad Naeem Khan, Amin Abid, et al. Green Protocol for the Synthesis of Catalyst Free Biginelli Products. Am J Heterocycl Chem. 2020;6(1):1-5. doi: 10.11648/j.ajhc.20200601.11
@article{10.11648/j.ajhc.20200601.11, author = {Abdul Ghafoor and Naved Sajid and Muhammad Adnan and Muhammad Naeem Khan and Amin Abid and Ansa Madeeha Zafar and Muhammad Ahmad and Noreen Aslam and Mussarat Jabeen and Amjad Ali and Misbahul Ain Khan}, title = {Green Protocol for the Synthesis of Catalyst Free Biginelli Products}, journal = {American Journal of Heterocyclic Chemistry}, volume = {6}, number = {1}, pages = {1-5}, doi = {10.11648/j.ajhc.20200601.11}, url = {https://doi.org/10.11648/j.ajhc.20200601.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajhc.20200601.11}, abstract = {Applications of multicomponent reactions (MCRs) in the preparation of diverse types of heterocyclic compounds carries a unique place in chemical synthesis. Biginelli reaction, among the loop of multicomponent reactions, provide an efficient way to access of highly functionalized dihydropyrimidones (-thiones) (DHPMs). In the current study, we employed multicomponent Biginelli reaction to synthesis range of different dihydropyrimidones (-thiones) derivatives in variable yields. A solvent-free eco-friendly green protocol without any expensive catalyst has been optimized and expand to synthesize series of DHMPS in 34 to 72% yield. The optimized method proved to be successful with various types of different aromatic aldehydes, 1, 3-dicarbonyl compounds and urea (thiourea) under solvent and catalyst free condition to access dihydropyrimidones (thiones). Different spectroscopic techniques include NMR, FTIR etc. have used to confirm the structures of compounds. Further exploration of Biginelli reaction to prepare DHPMs and related compounds is under way in the lab and will be published in due course.}, year = {2020} }
TY - JOUR T1 - Green Protocol for the Synthesis of Catalyst Free Biginelli Products AU - Abdul Ghafoor AU - Naved Sajid AU - Muhammad Adnan AU - Muhammad Naeem Khan AU - Amin Abid AU - Ansa Madeeha Zafar AU - Muhammad Ahmad AU - Noreen Aslam AU - Mussarat Jabeen AU - Amjad Ali AU - Misbahul Ain Khan Y1 - 2020/05/28 PY - 2020 N1 - https://doi.org/10.11648/j.ajhc.20200601.11 DO - 10.11648/j.ajhc.20200601.11 T2 - American Journal of Heterocyclic Chemistry JF - American Journal of Heterocyclic Chemistry JO - American Journal of Heterocyclic Chemistry SP - 1 EP - 5 PB - Science Publishing Group SN - 2575-5722 UR - https://doi.org/10.11648/j.ajhc.20200601.11 AB - Applications of multicomponent reactions (MCRs) in the preparation of diverse types of heterocyclic compounds carries a unique place in chemical synthesis. Biginelli reaction, among the loop of multicomponent reactions, provide an efficient way to access of highly functionalized dihydropyrimidones (-thiones) (DHPMs). In the current study, we employed multicomponent Biginelli reaction to synthesis range of different dihydropyrimidones (-thiones) derivatives in variable yields. A solvent-free eco-friendly green protocol without any expensive catalyst has been optimized and expand to synthesize series of DHMPS in 34 to 72% yield. The optimized method proved to be successful with various types of different aromatic aldehydes, 1, 3-dicarbonyl compounds and urea (thiourea) under solvent and catalyst free condition to access dihydropyrimidones (thiones). Different spectroscopic techniques include NMR, FTIR etc. have used to confirm the structures of compounds. Further exploration of Biginelli reaction to prepare DHPMs and related compounds is under way in the lab and will be published in due course. VL - 6 IS - 1 ER -