International Journal of Computational and Theoretical Chemistry

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

A Generalized Approach to Understand the CoMFA and CoMSIA Analysis Within the Framework of Density Functional Theory

Our working group has worked to find methodologies that can relate the CoMFA and CoMSIA calculations with density functional theory, considering the mathematical context that it represents in terms of chemical reactivity indices. Currently, the three-dimensional quantitative structure-activity relationship (3D QSAR) models have many applications; however due to the complexity to understand its results is necessary postulate new methodologies. In this sense, this work postulates a generalized version joining the quantum similarity field and chemical reactivity descriptors within the framework of density functional theory. One of the advantages of Quantum Molecular Similarity is that it uses electronic density as object of study. The CoMFA and CoMSIA results can be modeled joining MQS and chemical reactivity; in this context these outcomes can be applied in QSAR correlations and docking studies to understand the biological activity of some molecular set. This generalized methodology can be applied to understand the biological activity on a molecular set taking a reference compound. In order to understand its corrections from the structural and electronic point of view.

CoMFA, CoMSIA, 3D-QSAR, Molecular Quantum Similarity (MQS), Chemical Reactivity Descriptors, Density Functional Theory (DFT)

APA Style

Alejandro Morales-Bayuelo. (2022). A Generalized Approach to Understand the CoMFA and CoMSIA Analysis Within the Framework of Density Functional Theory. International Journal of Computational and Theoretical Chemistry, 10(1), 9-13. https://doi.org/10.11648/j.ijctc.20221001.12

ACS Style

Alejandro Morales-Bayuelo. A Generalized Approach to Understand the CoMFA and CoMSIA Analysis Within the Framework of Density Functional Theory. Int. J. Comput. Theor. Chem. 2022, 10(1), 9-13. doi: 10.11648/j.ijctc.20221001.12

AMA Style

Alejandro Morales-Bayuelo. A Generalized Approach to Understand the CoMFA and CoMSIA Analysis Within the Framework of Density Functional Theory. Int J Comput Theor Chem. 2022;10(1):9-13. doi: 10.11648/j.ijctc.20221001.12

Copyright © 2022 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. (a) Morales-Bayuelo A, Matute R A, Caballero J 2015 J. Mol. Model. 21, 156. (b) Morales-Bayuelo A, Caballero J 2015 Mol2Net, 2015, 1 (Section B), pages 1-13, Proceedings.
2. Carbó-Dorca R, Arnau M, Leyda L 1980 Int. J. Quant. Chem. 17, 1185.
3. Amat L, Carbó-Dorca R 2002 Int. J. Quant. Chem. 87, 59.
4. Gironés X, Carbó-Dorca R 2006 QSAR Comb. Sci. 25, 579.
5. Carbó-Dorca R, Gironés X 2005 Int. J. Quat. Chem. 101, 8.
6. Bultinck P, Rafat M, Ponec R, Gheluwe B V, Carbó-Dorca R, Popelier P 2006 J. Phys. Chem. A. 110, 7642.
7. Robert D, Amat L, Carbó-Dorca R 1999 J. Chem. Inf. Comp. Sci. 39, 333.
8. (a) Morales-Bayuelo A, Vivas-Reyes R. 2013 J. Math. Chem. 51, 125. (b) Morales-Bayuelo A, Vivas-Reyes R. 2013 J. Math. Chem. 51, 1835. (c) Morales-Bayuelo A, Torres J, Vivas-Reyes R 2012 J. Theor. Comput. Chem. 11, 1. (d) Morales-Bayuelo A, Vivas-Reyes R. 2014 J. Quant. Chem. Article ID 239845, 19 pages. (e) Morales-Bayuelo A, Vivas-Reyes R. J. Quant. Chem. 2014, Article ID 850163, 12 pages.
9. Parr R G, Yang W 1989 Density Functional Theory of Atoms and Compounds; Oxford University Press: New York.
10. Geerlings P, De Proft F, Langenaeker W, 2003 Chem. Rev. 103, 1793.
11. R. Carbó-Dorca, J. Math. Chem. 23, 353 (1998).
12. R. Carbó-Dorca, Adv. Molec. Simil. 2, 43–72 (1998).
13. E. Besalu, X. Girones, L. Amat, R. Carbo- Dorca. Acc Chem Res. 2002; 35: 289- 295.
14. R. Carbó:Dorca, L. D. Mercado. Communications on quantum similarity, part 3: a geometric-quantum similarity molecular superposition algorithm. J. Com. Chem. 32, (2010) 582–599.
15. X. Gironés, R. Carbó: Dorca. Modelling toxicity using molecular quantum similarity measures. QSAR Combinator. Sci. 25, (2006) 579–589.
16. R. Carbó-Dorca, E. Besalú, L. D. Mercado. Communications on quantum similarity (2): a geometric discussion on holographic electron density theorem and confined quantum similarity measures. J. Com. Chem. 32, (2011) 2452–2462.
17. Bultinck P, Gironés X, Carbó-Dorca R (2005) Rev. Comput. Chem. 21, 127.
18. Hirshfeld F L 1977 Theor. Chim. Acta. 44, 129.
19. De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P 2002 J. Comput. Chem. 23, 1198.
20. Randic M, Johnson M A, Maggiora G M 1990. In Concepts and Applications of Molecular Similarity, Design of Compounds with Desired Properties. Eds., Wiley-Interscience. New York. 77.
21. (a) Boon G, Van Alsenoy C, De Proft F, Bultinck P, Geerlings P 2005 J. Mol. Struct. 727, 49. (b) Morales-Bayuelo A, Caballero, J. 2015 J. Mol. Mod. 21, 45.
22. Ayers P W, Anderson J S M, Bartolotti L J 2005 Int. J Quant. Chem. 101, 520.
23. Harbola MK, Chattaraj PK, Parr RG 1991 Isr. J. Chem. 31, 395.
24. Pearson R G 1997 Chemical Hardness; Applications from Compounds to Solids; Wiley-VHC, Verlag GMBH: Weinheim, Germany.
25. Yang W T, Parr R G 1985 Proc. Natl. Acad. Sci. 82, 6723.
26. Chattaraj PK, Sarkar U, Roy DR 2006 Chem. rev. 106, 2065.
27. Ayers P, Parr R G 2000 J. Am. Chem. Soc. 122, 2010.
28. Galván M, Pérez P, Contreras R, Fuentealba P 1999 Chem. Phys. Lett. 30, 405.
29. Mortier W J, Yang W 1986 J. Am. Chem. Soc. 108, 5708.
30. Fuentealba P, Pérez P, Contreras R 2000 J. Chem. Phys. 113, 2544.
31. Oliveira M, Cenzi G, Nunes RR, Andrighetti, Valadão D MS, Reis C, Oliveira Simões CM, Nunes RJ, Júnior MC, Taranto AG, Sanchez BAM, Viana GHR Varotti FP 2013 Molecules. 18, 15276.
32. Carbó-Dorca R 2013 J Math Chem. 51, 289.
33. Carbó-Dorca R 2008 J Math Chem. 44, 621.