Advances in Materials

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Prediction of Thermal Comfort from Operating Temperature and the Predicted Mean Vote / Predicted Percentage Dissatisfied (PMV/PPD) Indices in a Nubian Vault

The building and construction sector has a significant impact on the environment due to its high consumption of energy resources and increasing levels of emissions, and pollution. According to the United Nations Human Settlements Program (UN-HABITAT), the energy used by buildings and construction accounts for more than a third of the final energy consumed in the world and a quarter of greenhouse gas emissions. African countries such as Burkina Faso are concerned in this reality in the field of building. This is why the major issue in the tropic today is the construction of new buildings with high environmental quality and high energy performance. Today's construction choices will have an impact on future generations. The technique and materials of a building contribute to the health, safety and comfort of people. In the present work, the operating temperature and the PMV/PPD indices in a Nubian vault were determined. The operating temperature and the PMV/PPD indices are indicators of thermal comfort. Thus, the knowledge of these indicators allows to appreciate the state of comfort in the Nubian vault. It is in this perspective that the operating temperature will be determined by the adaptive method. The Fanger model is used for the determination of the PMV/PPD indexes. From the state of sensation obtained, acceptable ambient conditions can be defined for an individual in a tropical zone. As an alternative, the most suitable construction type and building materials could be recommended for each type of climate.

Operating Temperature, Wall Temperature, PMV Indice, PPD Indice, Thermal Comfort, Adaptive Approach, Analytical Model

APA Style

Karim Toussakoe, Emmanuel Ouedraogo, Bouto Kossi Imbga, Gilbert Nana, Abdoulaye Compaore, et al. (2023). Prediction of Thermal Comfort from Operating Temperature and the Predicted Mean Vote / Predicted Percentage Dissatisfied (PMV/PPD) Indices in a Nubian Vault. Advances in Materials, 12(1), 9-16. https://doi.org/10.11648/j.am.20231201.12

ACS Style

Karim Toussakoe; Emmanuel Ouedraogo; Bouto Kossi Imbga; Gilbert Nana; Abdoulaye Compaore, et al. Prediction of Thermal Comfort from Operating Temperature and the Predicted Mean Vote / Predicted Percentage Dissatisfied (PMV/PPD) Indices in a Nubian Vault. Adv. Mater. 2023, 12(1), 9-16. doi: 10.11648/j.am.20231201.12

AMA Style

Karim Toussakoe, Emmanuel Ouedraogo, Bouto Kossi Imbga, Gilbert Nana, Abdoulaye Compaore, et al. Prediction of Thermal Comfort from Operating Temperature and the Predicted Mean Vote / Predicted Percentage Dissatisfied (PMV/PPD) Indices in a Nubian Vault. Adv Mater. 2023;12(1):9-16. doi: 10.11648/j.am.20231201.12

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. M’Sellem, H., & Alkama, D., Le confort thermique entre perception et évaluation par les techniques d’analyse bioclimatique - Cas des lieux de travail dans les milieux arides à climat chaud et sec-. Revue Des Energies Renouvelables, 12, 471–488, 2009.
2. Zoma, F., Toguyeni, D. Y. K., Kiemtoré, B. J., & Ouedraogo, E., Valorization of Local Construction and Technique: Hygrothermal Behavior, Thermal and Visual Comfort of a Nubian Vaulted Construction in Sahelian Climate of Ouagadougou. Current Journal of Applied Science and Technology, 39 (29), 110–123, 2020.
3. Halidi, A., Confort thermique thermique d’une habitation bioclimatique Antananarivo, 2015.
4. ISO 7730, Reference number ISO 7730: 2005 (E) ISO 2005 INTERNATIONAL STANDARD ISO 7730 Third edition 2005-11-15 Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and l, 2005.
5. Olesen, B. W, Brager, G. S., A better way to predict thermal comfort. ASHRAE Journal, August, 20–26, 2004.
6. Rabetanetiarimanana; & Razanamanampisoa, Etude du confort thermique à partir d ’ une expérimentation et simulation avec EnergyPlus. November 2018.
7. K. Jnat, Analyse et optimisation des dépenses d’énergie dans le logement social, thèse, Université de Lille, École Doctorale Sciences pour l’Ingénieur, Laboratoire Génie Civil et géo-Environnement, 2018.
8. Raji, S., Caractérisation hygro thermique, par une approche multi échelle, de constructions en bois massif en vue d’amélioration énergétique et de valorisation environnementale, 2006.
9. Fgaier, F. E. L., Delivre, D., Ecole, P. A. R. L., Lille, C. D. E., Aubert, J., & Fleureau, J., Conception, production et qualification des briques en terre cuite et en terre crue, 2013.
10. De Dear, R., & Brager, G. S., The adaptive model of thermal comfort and energy conservation in the built environment. International Journal of Biometeorology, 45 (2), 100–108, 2001.
11. Dear, B. et De, A Standard for Natural Ventilation. The Biblical Archaeologist, 55 (4), 227, 2000.
12. Jannot, Y., & Djiako, T., Economie d’énergie et confort thermique dans l’habitat en zone tropicale. International Journal of Refrigeration, 17 (3), 166–173, 1994.
13. Moujalled, B., Modélisation dynamique du confort thermique dans les bâtiments naturellement ventilés, 2007.
14. P. O. Fanger, Thermal comfort, analysis and application in environmental engineering. 1970.
15. Gaye, S., Caractérisation des propriétés mécaniques, acoustiques et thermiques dematériaux locaux de construction au Sénégal, 2001.
16. Minane, J. M., Confort thermique et methodes de climatisation passive ou a faible cout : application au puits canadien, 2010.
17. Ouattara, F., Toure, S., Memeledje, Thermiques dans une case ronde en geobeton. Journal Des Scieces, 4 (1), 2004.
18. Grosdemouge, V., Proposition d’indicateurs de confort thermique et estimation de la température radiante moyenne en milieu urbain tropical. Contribution à la méthode nationale d’évaluation des ÉcoQ. March, 2021.
19. Dessureault, P. C., Pertinence et conditions d’utilisation des indices thermiques dans le contexte québécois, 2014.
20. Charles-Florian Picard, Marc Abadie, A. D., Définition des indicateurs de confort. 80, 2020.
21. Tartarini, F., Schiavon, S., Cheung, T., & Hoyt, T., CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX, 12, 100563, 2020.
22. O. A. Olissan, Influence de la fenestration en vitre sur le confort humide : cas de la bande cotiere du benin, Universite de Liège Faculté des Sciences Département de Sciences et Gestion de l’environnement Building Energy Monitoring and Simulation, 2017.
23. Olesen, B. W., & Parsons, K. C. (2002). Introduction to thermal comfort standards and to the proposed new version of EN ISO 7730. Energy and Buildings, 34 (6), 537–548.
24. AFNOR., Ergonomie des amniances thermiques, Détermination analytique et interprétation du confort thermique par le calcul des indices {PMV} et {PDD} et par des critère de confort thermique local. Norme Europ{é}enne, Norme Française, 2005.
25. ASHRAE standard 55: Thermal environmental conditions for human occupancy. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., 2004.
26. Markov, D. (2003). Standards in Thermal Comfort. New York, October 2002, 63–75.