American Journal of Materials Synthesis and Processing

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Synthesis and Antibacterial Activity of 2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)- 6-bromo Quinazolin-4(3H)-one from 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one

Introduction: Broad range of quinazolinone biological properties including: antibacterial, anticancer, and anti-inflammatory activities motivate us to synthesis some quinazolinone derivatives. These heterocycles are profitable intermediates in organic synthesis. Methods/Experimental: The compound 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one (1), was produce when 2-(o-aminophenyl)-3-amino-6-bromo–Quinazolin-4(3H)-one (0.055M) was dissolved in minimum amount of dil. HCl in a round bottom flask. Ammonium thiocyanate (0.11M, 9.68gm) was then added and the mixture refluxed for 7 hrs. A mixture of 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–Quinazolin-4(3H)-one (0.037M, 16.095gm) and fused sodium acetate (0.074M, 6.068gm) was taken in absolute alcohol (300ml) and refluxed for 10 hours to give 6-bromo-2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)-Quinazolin-4(3H)-one(2). These Compounds were evaluated for their antibacterial activity (against some gram positive and gram negative microorganism) and antifungal activity (against Candida albicans). Study Design: This study was experimentally design and the antibacterial activity was evaluated against some microorganism, Staphylococcus aureus, Bacillus species, Aspergillus Species, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumonia, and candida albicans Result: The compounds exhibited significant antibacterial activity with a zone of inhibition in the range of 10 – 20mm in comparison to control. Conclusions: From our findings, the compounds synthesized have higher antibacterial activities against Staphylococcus aureus, Aspergillus Species, as compared to Ciprofloxicin (CPX) and Ketonaxol (PEF) standard antibacterial drugs.

Antibacterial Activity, Quinazolinone Derivatives, 2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)- 6-bromo–Quinazolin-4(3H)-one, 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one

APA Style

Osarumwense Peter Osarodion. (2023). Synthesis and Antibacterial Activity of 2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)- 6-bromo Quinazolin-4(3H)-one from 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one. American Journal of Materials Synthesis and Processing, 8(1), 1-5.

ACS Style

Osarumwense Peter Osarodion. Synthesis and Antibacterial Activity of 2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)- 6-bromo Quinazolin-4(3H)-one from 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one. Am. J. Mater. Synth. Process. 2023, 8(1), 1-5. doi: 10.11648/j.ajmsp.20230801.11

AMA Style

Osarumwense Peter Osarodion. Synthesis and Antibacterial Activity of 2-[o-imino-(4-thiazolidinone)-phenyl]-3-imino-(4-thiazolidinone)- 6-bromo Quinazolin-4(3H)-one from 2-(o-thiadiaminephenyl)-3-thiadiamine-6-bromo–quinazoline-4(3H)-one. Am J Mater Synth Process. 2023;8(1):1-5. doi: 10.11648/j.ajmsp.20230801.11

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Chandregowda V, Kush AK, Chandrasekara Reddy G: Synthesis and in vitro antitumor activities of novel 4-anilinoquinazoline derivatives. Eur J Med Chem. 2009, 44: 3046-3055. 10.1016/j.ejmech.2008.07.023.
2. Al-Rashood ST, Aboldahab IA, Nagi MN, Abouzeid LA, Abdel-Aziz AA, Abdel-Hamide SG, Youssef KM, Al-Obaid AM, El-Subbagh HI: Synthesis, dihydrofolate reductase inhibition, antitumor testing, and molecular modeling study of some new 4(3H)-quinazolinone analogs. Bioorg Med Chem. 2006, 14: 8608-8621. 10.1016/j.bmc.2006.08.030.
3. Vasdev N, Dorff PN, Gibbs AR, Nandanan E, Reid LM, Neil JPO’, VanBrocklin HF: Synthesis of 6-acrylamido-4-(2-[18F] fluoroanilino) quinazoline: A prospective irreversible EGFR binding probe. J Lablelled Compd Rad. 2005, 48: 109-115. 10.1002/jlcr.903.
4. Wakeling AE, Guy SP, Woodburn JR, Ashton SE, Curry BJ, Barker AJ, Gibson KH: ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002, 62: 5749-5754.
5. Alagarsamy V, Solomon VR, Dhanabal K: Synthesis and pharmacological evaluation of some 3-phenyl-2-substituted-3H-quinazolin-4-one as analgesic, anti-inflammatory agents. Bioorg Med Chem. 2007, 15: 235-241. 10.1016/j.bmc.2006.09.065.
6. Baba A, Kawamura N, Makino H, Ohta Y, Taketomi S, Sohda T: Studies on disease-modifying antirheumatic drugs: synthesis of novel quinoline and quinazoline derivatives and their anti-inflammatory effect 1. J Med Chem. 1996, 39: 5176-5182. 10.1021/jm9509408.
7. Rohini R, Muralidhar Reddy P, Shanker K, Hu A, Ravinder V: Antimicrobial study of newly synthesized 6-substituted indolo[1,2-c]quinazolines. Eur J Med Chem. 2010, 45: 1200-1205. 10.1016/j.ejmech.2009.11.038.
8. Antipenko L, Karpenko A, Kovalenko S, Katsev A, Komarovska-Porokhnyavets E, Novikov V, Chekotilo A: Synthesis of new 2-thio-[1,2,4]triazolo[1,5-c]quinazoline derivatives and its antimicrobial activity. Chem Pharm Bull. 2009, 57: 580-585. 10.1248/cpb.57.580.
9. Jatav V, Kashaw S, Mishra P: Synthesis and antimicrobial activity of some new 3–[5-(4-substituted)phenyl-1,3,4-oxadiazole-2yl]-2-styrylquinazoline-4(3H)-ones. Med Chem Res. 2008, 17: 205-211. 10.1007/s00044-007-9054-3.
10. Aly AA: Synthesis of novel quinazoline derivatives as antimicrobial agents. Chin J Chem. 2003, 21: 339-346.
11. Li H, Huang R, Qiu D, Yang Z, Liu X, Ma J, Ma Z: Synthesis and bioactivity of 4-quinazoline oxime ethers. Prog Nat Sci. 1998, 8: 359-365.
12. Chandrika PM, Yakaiah T, Narsaiah B, Sridhar V, Venugopal G, Rao JV, Kumar KP, Murthy USN, Rao ARR: Synthesis leading to novel 2,4,6-trisubstituted quinazoline derivatives, their antibacterial and cytotoxic activity against THP-1, HL-60 and A375 cell lines. Indian J Chem. 2009, 48B: 840-847.
13. Paneersalvam P, Raj T, Ishar PS M, Singh B, Sharma V, Rather BA: Anticonvulsant activity of Schiff bases of 3-amino-6,8-dibromo-2-phenyl-quinazolin-4(3H)-ones. Indian J Pharm Sci. 2010, 72: 375-378. 10.4103/0250-474X.70488.
14. Nandy P, Vishalakshi MT, Bhat AR: Synthesis and antitubercular activity of Mannich bases of 2-methyl-3H-quinazolin-4-ones. Indian J Heterocycl Chem. 2006, 15: 293-294.
15. Saravanan G, Alagarsamy V, Prakash CR: Synthesis and evaluation of antioxidant activities of novel quinazoline derivatives. Int J Pharm Pharm Sci. 2010, 2: 83-86.
16. Lakhan R, Singh OP, Singh-J RL: Studies on 4 (3H)-quinazolinone derivatives as anti-malarials. J Indian Chem Soc. 1987, 64: 316-318.
17. Hess HJ, Cronin TH, Scriabine A: Antihypertensive 2-amino-4(3H)-quinazolinones. J Med Chem. 1968, 11: 130-136. 10.1021/jm00307a028.
18. Sasmal S, Balaji G, Kanna Reddy HR, Balasubrahmanyam D, Srinivas G, Kyasa S, Sasmal PK, Khanna I, Talwar R, Suresh J, Jadhav VP, Muzeeb S, Shashikumar D, Harinder Reddy K, Sebastian VJ, Frimurer TM, Rist Ø, Elster L, Högberg T: Design and optimization of quinazoline derivatives as melanin concentrating hormone receptor 1 (MCHR1) antagonists. Bioorg Med Chem Lett. 2012, 22: 3157-3162. 10.1016/j.bmcl.2012.03.050.
19. Alvarado M, Barceló M, Carro L, Masaguer CF, Raviña E: Synthesis and biological evaluation of new quinazoline and cinnoline derivatives as potential atypical antipsychotics. Chem Biodivers. 2006, 3: 106-117. 10.1002/cbdv.200690001.
20. Malamas MS, Millen J: Quinazolineacetic acids and related analogs as aldose reductase inhibitors. J Med Chem. 1991, 34: 1492-1503. 10.1021/jm00108a038.
21. Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem. 2015, 90, 124–169, DOI: 10.1016/j.ejmech.2014.10.084.
22. Gupta, T.; Rohilla, A.; Pathak, A.; Akhtar, M. J.; Haider, M. R.; Yar, M. S. Current perspectives on quinazolines with potent biological activities: A review. Synth. Commun. 2018, 48, 1099– 1127, DOI: 10.1080/00397911.2018.1431282.
23. Akduman, B.; Crawford, E. D. Terazosin, doxazosin, and prazosin: current clinical experience. Urology 2001, 58, 49– 54, DOI: 10.1016/S0090-4295(01)01302-4.
24. McConnell, J. D. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N. Engl. J. Med. 2003, 349, 2387– 2398, DOI: 10.1056/NEJMoa030656..
25. Pao, W.; Miller, V. A. Epidermal growth factor receptor mutations, small-molecule kinase inhibitors, and non-small-cell lung cancer: current knowledge and future directions. J. Clin. Oncol. 2005, 23, 2556–2568, DOI: 10.1200/JCO.2005.07.799.
26. Miller, V. A. Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J. Clin. Oncol. 2004, 22, 1103– 1109, DOI: 10.1200/JCO.2004.08.158.
27. Mackie, R,: Cartney, M. C. Practical Medicinal Microbiology 3rd edition, Vol.2 Churchill Livingstone (Publishers), London and New York. 1984; 121, 141: Pp. 100-106.