Research & Development

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Obtained Molecular Hydrogen by Radiolysis of Water in Nano-SiO2(d=20¸60 nm)/H2O System Under the Influence of Gamma Rays

The amount molecular hydrogen obtained from radiolysis process, it's formation rate and radiation-chemical yield are determined in the nano-SiO2/H2O system with a mass of m=0.2 g and d=20-60 nm particle size under the influence of gamma irradiation. In systems created by the adsorption of water on the surface of nano-SiO2 under the influence of gamma rays, the radiation-chemical yield of molecular hydrogen obtained from the decomposition of water was less than 0.36 molecules/(100 eV). This means that the surface density of the energy transfer centers on the surface of nano-SiO2 is very small. As the mass of water increases, the radiation of the nano-SiO2 emitted from the surface of the nanoparticles in the liquid space between the particles increases, and the radiation of the resulting molecular hydrogen also increases. However, the radiation-chemical yield of molecular hydrogen obtained from the decomposition of water was less than 0.36 molecules/(100 eV) in systems created by the adsorption of water on the surface of nano-SiO2 irradiated by gamma rays. This means that the surface density of the energy transfer centers on the surface of nano-SiO2 is very small. When the intergranular space is filled with water, the electrons emitted from the surface of the solid to the liquid phase and the radiation-chemical yield of salvaged electrons in liquid phase increases.

Nanoparticle, Radiolysis, Radiation-chemical Yield, Electron Emission

APA Style

Yadigar Jafarov. (2022). Obtained Molecular Hydrogen by Radiolysis of Water in Nano-SiO2(d=20¸60 nm)/H2O System Under the Influence of Gamma Rays. Research & Development, 3(1), 6-10. https://doi.org/10.11648/j.rd.20220301.12

ACS Style

Yadigar Jafarov. Obtained Molecular Hydrogen by Radiolysis of Water in Nano-SiO2(d=20¸60 nm)/H2O System Under the Influence of Gamma Rays. Res. Dev. 2022, 3(1), 6-10. doi: 10.11648/j.rd.20220301.12

AMA Style

Yadigar Jafarov. Obtained Molecular Hydrogen by Radiolysis of Water in Nano-SiO2(d=20¸60 nm)/H2O System Under the Influence of Gamma Rays. Res Dev. 2022;3(1):6-10. doi: 10.11648/j.rd.20220301.12

Copyright © 2022 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. I. M. Neklyudov, V. N. Voevodin, Modern status of radiation material science 10th International Conference, Interaction of radiation with a solid body, September 24-27, 2013, Minsk, Belarus, p. 127-130.
2. Sophie Le Caer, Water Radiolysis Influence of Oxide Surfaces on H2 Production under Ionizing Radiation, Water 2011, 3, p. 235-253.
3. G. Merga, B. H. Milosavijevic, D. Meisel, J. Phys. Chem. B, 2006, 110, p. 5403-54.
4. N. G. Petrik, A. B. Alexandrov. A. I. Vall, J. Phys. Chem. B 2001, 105, p. 5935-5944.
5. T. Schatz, A. R. Cook, D. Meisel, J. Phys. Chem. B 1999, 103, p. 10209-10213.
6. J. A. LaVerne, J. Phys. Chem. B 2005, 109, p. 5395-5397.
7. J. A. LaVerne, L. Tandon, J. Phys. Chem. B 2003, 107, p. 13623-13628.
8. J. A. LaVerne, S. E. Tunnies, J. Phys. Chem. B 2003, 107, p. 7277-7280.
9. J. A. LaVerne, L. Tandon, J. Phys. Chem. B 2002, 106, p. 380-386.
10. T. Schatz, A. R. Cook, D. Meisel, J. Phys. Chem. B 1998, 102, p. 7225-7230.
11. A. A. Garibov, T. N. Agaev, G. T. Imanova, K. T. Eyubov VANT, 2015, 5, (99), p. 48-51.
12. A. A. Garibov, T. N. Agaev, G. T. Imanova, S. Z. Melikova, N. N. Gadzhieva High energy chemistry, 2014, p. 239-243.
13. T. A. Yamamoto, S. Seino, M. Katsura et al., Nanostructured Materials. 1999, 12, 5, p. 1045-1048.
14. A. A. Garibov, Radiation-heterogenic processesof hydrogen accumulationin water-cooled nuclear reactors, Nukleonika, 2011, v. 56 (4), p. 333-342.
15. Y. D. Jafarov, S. M. Bashirova, K. T. Eyyubov, A. A. Garibov, Obtaining molecular hydrogen formed by thermal and radiation-thermal transformation of water in the nano-Si+H2O system, VANT, 2019, 2 (120), p. 55-60.
16. Jafarov Y. D., Bashirova S. M., Garibov A. A., Eyubov K. T. Influence of mass and size effects of silicon on the process of water radiolysis proceeding in the Si/H2O system under the influence of gamma quanta, (VANT), 2018, 2 (114), p. 35-39.
17. V. V. Gusarov, V. I. Almyashev, V. B. Khabensky, S. V. Beshchta, V. S. Granovsky, A new class of functional materials for a device for localizing the core melt of a nuclear reactor, Ros. Chem. J., 2005, 4, p. 42-53.
18. A. K. Pikaev, Dosimetry and Radiation Chemistry, M., Nauka, 1975.
19. Y. D. Jafarov, A. A. Garibov, S. A. Aliyev et al. Calculation of the absorbed dose of gamma radiation in oxide dielectrics, Atomic Energy, 1987, 63, p. 269-270.
20. G. A. Aussman, F. B. McLean, Appl. Phys. Lett. 26, 173 (1975), p. 123.
21. Levin M. I. et al., Bulletin of Voronezh State University, Series: Physics. Mathematics, 2008, 2, p. 30-36.
22. P. Alba-Simionesco, H2 formation by electron irradiation of SBA-15 materials and the effect of Cu II grafting, Phys. Chem. Chem. Phys. 2010, 12, p. 14188-14195.
23. Liu X., Zhang G., Thomas J. K. Spectroscopic Studies of Electron and Hole Trapping in Zeolites: Formation of Hydrated Electrons and Hydroxyl Radicals, J. Phys. Chem. B, 1997, 101, p. 2182-2194.
24. Dimitrijevic N. M., Henglein A., Meisel D., Charge separation across the silica nanoparticle/water interface, J. Phys. Chem. B, 1999, 103, p. 7073-7076.
25. Ouerdane H., Gervais B., Zhou H., Beuve M., Renault J. P. Radiolysis of water confined in porous silica: a simulation study of the physicochemical yields, J. Phys. Chem. C, 2010, 114, p. 12667-12674.
26. G. T. Imanova, A. A. Garibov, T. N. Agayev, Gamma rays mediated water splitting on nano-ZrO2 surface: Kinetics of molecular hydrogen formation, Radiation Physics and Chemistry, 2021, 183, p. 109431.
27. T. N. Agayev, G. T. Imanova, Sh. Z. Musayeva, Studying the Kinetics of Formation of Molecular Hydrogen during the Radiolysis of Hexane and a Mixture of C6H14–H2O on a Surface of n-ZrO2, Russian Journal of Physical Chemistry A, 2021, 95, 2, p. 270–272.
28. G. T. Imanova, Kinetics Of Radiation-Heterogeneous And Catalytic Processes Of Water In The Presence Of Zirconia Nanoparticles, Advanced Physical Research, 2020, 2, p. 94-101.
29. A. A. Garibov, T. N. Agayev, G. T. Imanova, Radiation and catalytic properties on the n-ZrO2+n–Al2O3 systems in the process of hydrogen production from water, J. Nanotechnologies in Russia, 2017, 12, 5-6, p. 22-26.
30. T. N. Agayev, G. T. Imanova, A. A. Garibov, Nanostructured materials based on nano-ZrO2 in the nuclear – power engineering, Journal of radiation researches, 2014, 1, p. 49-55.