A mission to Uranus facilitates a thorough examination of Uranus, its rings, satellites, and other planetary objects. To travel from Earth to any other planet, a variety of approaches can be used. Despite the standard gravity assist methods to reach the ice-giant Uranus, a direct transfer mission is also feasible. This work provides an overview of the preliminary estimation of the launch mass for a direct transfer mission. The departure year 2022-2030 is considered for this study. The payload and spacecraft subsystems for the proposed mission were selected based on past interplanetary missions. The estimated mass of the scientific instrument of this work was found to be 147.5 Kg. The mass of the payload is 11% of the spacecraft's dry mass. The delta-V for the various departure years is obtained using Lambert’s problem for the different time frames. Delta-V and the launch mass are calculated for a range of 15.5-8.5 years of time-of-flight. The upper limit of the time-of-flight is selected based on a Hohmann transfer. Launch mass decreases from 15.5-13.5 years of time-of-flight and then increases to a maximum value at 8.5 years. For time-of-flight of 13.5 and 12.5 years, the delta-V and the launch mass obtained are optimum, 6.7 km/s and 1700 kg, respectively. In the period selected, these minimum values are observed for the departure year 2022. The data obtained reveal the feasibility of such a mission in the near future.
Published in | Science Research (Volume 10, Issue 4) |
DOI | 10.11648/j.sr.20221004.11 |
Page(s) | 89-98 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Uranus, Ice-Giants, Preliminary Mission Design, Launch Mass, Spacecraft Subsystems, Delta-V
[1] | Hughes, K. M. (2016). Gravity-assist trajectories to Venus, Mars, and the ice giants: Mission design with human and robotic applications (Doctoral dissertation, Purdue University). |
[2] | McAdams, J., Scott, C., Guo, Y., Dankanich, J., & Russell, R. (2011). Conceptual mission design of a polar Uranus orbiter and satellite tour. Spaceflight Mechanics, 140. |
[3] | McCarty, S. L., Oleson, S. R., Mason, L. S., & Gibson, M. A. (2018, August). Mission Design for the Exploration of Ice Giants, Kuiper Belt Objects and Their Moons Using Kilopower Electric Propulsion. In AAS/AIAA Astrodynamics Specialist Conference (ASC 2018) (No. GRC-E-DAA-TN59973). |
[4] | Landau, D., Lam, T., & Strange, N. (2009). Broad search and optimization of solar electric propulsion trajectories to Uranus and Neptune. Advances in the Astronautical Sciences, 135 (3), 2093-2112. |
[5] | Stankevich, S. A. (2015). Interplanetary missions instruments for infrared survey of planets and moons. Astronomical School’s Report, 11 (1), 24-33. |
[6] | Jarmak, S., Leonard, E., Akins, A., Dahl, E., Cremons, D. R., Cofield, S., & Mitchell, K. L. (2020). QUEST: A New Frontiers Uranus orbiter mission concept study. Acta Astronautica, 170, 6-26. |
[7] | D'Andrea, B., Brandonisio, A., Indaco, M., & Lavagna, M. R. (2020). MORPHEUS: A Multi-Spacecraft Architecture for the Uranus System Grand Tour. In AIAA Scitech 2020 Forum (p. 1920). |
[8] | Arridge, C. S., Achilleos, N., Agarwal, J., Agnor, C. B., Ambrosi, R., André, N., & Zarka, P. (2014). The science case for an orbital mission to Uranus: exploring the origins and evolution of ice giant planets. Planetary and Space Science, 104, 122-140. |
[9] | Yam, C. H., McConaghy, T. T., Chen, K. J., & Longuski, J. (2004, August). Preliminary design of nuclear electric propulsion missions to the outer planets. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit (p. 5393). |
[10] | Mousis, O., Atkinson, D. H., Cavalié, T., Fletcher, L. N., Amato, M. J., Aslam, S., & Villanueva, G. L. (2018). Scientific rationale for Uranus and Neptune in situ explorations. Planetary and Space Science, 155, 12-40. |
[11] | Hofstadter, M., Simon, A., Atreya, S., Banfield, D., Fortney, J. J., Hayes, A., & Ice Giant Mission Study Team. (2019). Uranus and Neptune missions: A study in advance of the next Planetary Science Decadal Survey. Planetary and Space Science, 177, 104680. |
[12] | RPWS Engineering Technical Write-up | Radio and Plasma Wave Science (RPWS) – NASA Solar System Exploration. (2018). Retrieved 25 January 2022, from https://solarsystem.nasa.gov/missions/cassini/mission/spacecraft/cassini-orbiter/radio-and-plasma-wave-science/rpws-tech/ |
[13] | Orton, G. S., Fletcher, L. N., Moses, J. I., Mainzer, A. K., Hines, D., Hammel, H. B.,... & Line, M. R. (2014). Mid-infrared spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere. Icarus, 243, 494-513. |
[14] | Bartels, M. (2021). UAE's Hope Mars orbiter spots elusive aurora on Red Planet. Retrieved 23 January 2022, from https://www.space.com/mars-aurora-discovery-uae-hope-mission |
[15] | Chekroun, C., Herrick, D., Michel, Y. M., Pauchard, R., & Vidal, P. (1981). Radant-New method of electronic scanning. L'Onde Electrique, 59, 89-94. |
[16] | Brown, C. D. (2002). Elements of spacecraft design. Aiaa. |
[17] | Zhao, H., Sun, Z., Xu, D., & Ye, D. (2019, June). Overall Conceptual Design for Spacecraft System Based on Knowledge Engineering. In 2019 Chinese Control And Decision Conference (CCDC) (pp. 4384-4388). IEEE. |
[18] | Jens, E. T., Karp, A. C., Rabinovitch, J., Conte, A., Nakazono, B., & Vaughan, D. A. (2018). Design of interplanetary hybrid cubesat and smallsat propulsion systems. In 2018 Joint Propulsion Conference (p. 4668). |
[19] | Iwabuchi, M., Satoh, S., & Yamada, K. (2021). Smooth and continuous interplanetary trajectory design of spacecraft using iterative patched-conic method. Acta Astronautica, 185, 58-69. |
[20] | Sartorello, S. (2019) Review of Lambertâ s Theorem, a two-body orbital boundary value problem. |
[21] | Parvathi, S. P., & Ramanan, R. V. (2016). Iterative pseudostate method for transfer trajectory design of interplanetary orbiter missions. Journal of Guidance, Control, and Dynamics, 39 (12), 2799-2809. |
[22] | Suseela, G. G., Sukumarapillai, Y. K., Thimmegowda, H., Devaiah, P. K., Nagendra, M., & Dhiraj, T. S. (2022). Analysis of Earth-Uranus Direct-Transfer Trajectory for Optimal Delta-V Using Lambert’s Problem. Astrophysics and Space Science, 10 (1), 9-17. |
[23] | Curtis, H. (2013). Orbital mechanics for engineering students. Butterworth-Heinemann. |
APA Style
Gisa Geoson Suseela, Yadu Krishnan Sukumarapillai, Hariprasad Thimmegowda, Manjunath Nagendra, Tamore Silviya Dhiraja, et al. (2022). Preliminary Estimation of Launch Mass for a Direct Transfer Earth-Uranus Mission. Science Research, 10(4), 89-98. https://doi.org/10.11648/j.sr.20221004.11
ACS Style
Gisa Geoson Suseela; Yadu Krishnan Sukumarapillai; Hariprasad Thimmegowda; Manjunath Nagendra; Tamore Silviya Dhiraja, et al. Preliminary Estimation of Launch Mass for a Direct Transfer Earth-Uranus Mission. Sci. Res. 2022, 10(4), 89-98. doi: 10.11648/j.sr.20221004.11
@article{10.11648/j.sr.20221004.11, author = {Gisa Geoson Suseela and Yadu Krishnan Sukumarapillai and Hariprasad Thimmegowda and Manjunath Nagendra and Tamore Silviya Dhiraja and Pavan Kalyan Devaiah}, title = {Preliminary Estimation of Launch Mass for a Direct Transfer Earth-Uranus Mission}, journal = {Science Research}, volume = {10}, number = {4}, pages = {89-98}, doi = {10.11648/j.sr.20221004.11}, url = {https://doi.org/10.11648/j.sr.20221004.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sr.20221004.11}, abstract = {A mission to Uranus facilitates a thorough examination of Uranus, its rings, satellites, and other planetary objects. To travel from Earth to any other planet, a variety of approaches can be used. Despite the standard gravity assist methods to reach the ice-giant Uranus, a direct transfer mission is also feasible. This work provides an overview of the preliminary estimation of the launch mass for a direct transfer mission. The departure year 2022-2030 is considered for this study. The payload and spacecraft subsystems for the proposed mission were selected based on past interplanetary missions. The estimated mass of the scientific instrument of this work was found to be 147.5 Kg. The mass of the payload is 11% of the spacecraft's dry mass. The delta-V for the various departure years is obtained using Lambert’s problem for the different time frames. Delta-V and the launch mass are calculated for a range of 15.5-8.5 years of time-of-flight. The upper limit of the time-of-flight is selected based on a Hohmann transfer. Launch mass decreases from 15.5-13.5 years of time-of-flight and then increases to a maximum value at 8.5 years. For time-of-flight of 13.5 and 12.5 years, the delta-V and the launch mass obtained are optimum, 6.7 km/s and 1700 kg, respectively. In the period selected, these minimum values are observed for the departure year 2022. The data obtained reveal the feasibility of such a mission in the near future.}, year = {2022} }
TY - JOUR T1 - Preliminary Estimation of Launch Mass for a Direct Transfer Earth-Uranus Mission AU - Gisa Geoson Suseela AU - Yadu Krishnan Sukumarapillai AU - Hariprasad Thimmegowda AU - Manjunath Nagendra AU - Tamore Silviya Dhiraja AU - Pavan Kalyan Devaiah Y1 - 2022/08/24 PY - 2022 N1 - https://doi.org/10.11648/j.sr.20221004.11 DO - 10.11648/j.sr.20221004.11 T2 - Science Research JF - Science Research JO - Science Research SP - 89 EP - 98 PB - Science Publishing Group SN - 2329-0927 UR - https://doi.org/10.11648/j.sr.20221004.11 AB - A mission to Uranus facilitates a thorough examination of Uranus, its rings, satellites, and other planetary objects. To travel from Earth to any other planet, a variety of approaches can be used. Despite the standard gravity assist methods to reach the ice-giant Uranus, a direct transfer mission is also feasible. This work provides an overview of the preliminary estimation of the launch mass for a direct transfer mission. The departure year 2022-2030 is considered for this study. The payload and spacecraft subsystems for the proposed mission were selected based on past interplanetary missions. The estimated mass of the scientific instrument of this work was found to be 147.5 Kg. The mass of the payload is 11% of the spacecraft's dry mass. The delta-V for the various departure years is obtained using Lambert’s problem for the different time frames. Delta-V and the launch mass are calculated for a range of 15.5-8.5 years of time-of-flight. The upper limit of the time-of-flight is selected based on a Hohmann transfer. Launch mass decreases from 15.5-13.5 years of time-of-flight and then increases to a maximum value at 8.5 years. For time-of-flight of 13.5 and 12.5 years, the delta-V and the launch mass obtained are optimum, 6.7 km/s and 1700 kg, respectively. In the period selected, these minimum values are observed for the departure year 2022. The data obtained reveal the feasibility of such a mission in the near future. VL - 10 IS - 4 ER -