Research Article | | Peer-Reviewed

Experimental Study on Influencing Factors of Mixing Solidification Strength of Marine Soft Soil

Received: 5 May 2024    Accepted: 4 June 2024    Published: 13 June 2024
Views:       Downloads:
Abstract

It is a common problem that the soft soil solidified strength by mixing is low. In order to search for the sensitive factors that affect the solidified strength, a certain marine soft soil is taken as an object, four influencing factors, such as solidified material and its dosage, mixing uniformity, water-cement ratio and curing environment, were selected for experimental study, the results show that: (1) the effect of the curing material and its content on the curing strength is obvious: the curing agent of HR soft clay is 183-212% of the cement curing strength, and the curing strength of the same kind of curing material with 20% is 25-44% higher than that of 15%. 2 mixing uniformity has a significant effect on the curing strength: the curing strength of slurry and soft soil after mixing for 1 minute is very different, and the average strength is only 10% of the full mixing strength. The average strength of the three-minute-agitation was 49-50% of the full-agitation strength, while the average strength of the six-minute-agitation strength was 92-93% of the full-agitation strength. 3 the effect of water-cement ratio on the curing strength is obvious: the curing strength decreases by 24-47% when the water-cement ratio is 1.0 vs 0.6, and by 75-80% when the water-cement ratio is 3.0 vs 0.6. 4 curing environment has obvious influence on curing strength: compared with standard curing condition, curing strength of low temperature curing condition is reduced by 52-57%. This study has important guiding significance for soft soil foundation treatment and solidified soil based on soft soil.

Published in Science Discovery (Volume 12, Issue 3)
DOI 10.11648/j.sd.20241203.12
Page(s) 47-53
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Soft Soil Curing, Curing Strength, HR Curing Agent, Mixing Uniformity, Curing Conditions

1.引言
地基处理中,搅拌桩由于其速度快且经济的优点,受到设计和建设方的青睐,是常用的处理方法[1],通常使用的固化材料是水泥。对于粉土、砂性土,水泥与其搅拌后的固化效果较好。但对于软土,采用常规工艺的水泥搅拌桩的强度很差,有些水泥土甚至取不出芯、几乎没有强度。设计人员为了提高水泥土的强度,将水泥设计用量一再加大,使用了大量的水泥,但效果仍不理想[1-3],高碳低效,亟需解决。
有研究发现,滨海软土中有机质含量高,且富含侵蚀性离子,在水泥浆液的体系中,有机质和氯离子、硫酸根离子等侵蚀性离子延缓了水泥的水化过程。其次,由于有机质的分解作用,使得水泥水化产物解体。因此,有机质使软土具有较大的水溶性、塑性、高膨胀性与低渗透性,对水泥软土加固体效果产生了不利的影响[4-6]。根据相关资料,无机类土壤固化剂依靠自身水解,产生N-A-S-H根、C-S-H凝胶、Aft晶体、CH晶体等水化物。水化物与土颗粒发生化学反应,生成片状、纤维状或针状结构,或形成膨胀性物质填充颗粒间孔隙,同时将土中大量的自由水转化为结晶水,最终形成稳定的连接增加软土加固体强度[7],固化效果比传统的水泥要好。为进一步研究水泥搅拌固化软土强度低的影响因素,同时对市面上应用于软土地质的土壤固化剂[8]材料性能进行验证,进行试验研究。
本试验拟定了影响海相软土搅拌固化强度的几个主要因素:固化材料及掺量、搅拌均匀性、水灰比、养护条件等。
2.工程试验
本试验土样取自青岛市上合胶州示范区的软土场区,为第四系全新统海相沼泽化层,埋深3-5m,土层为淤泥质粉质黏土,土体主要物理力学参数如表1所示。固化材料采用青岛即墨中联P.O42.5水泥、青岛慧睿科技公司HR软土固化剂两种材料。其中HR软土固化剂是一种无机胶凝材料,主要成分包括CaO、SiO2、Al2O3、MgO、Fe2O3以及外加剂(含量见表2)。
主要试验设备包括:立式搅拌机,标养箱,试验模具(70.7mm3),压力试验机等。
试验方法:①两种固化材料:P.O42.5水泥,HR软土固化剂;②两种掺量:15%,20%;③四种搅拌时间:1分钟,3分钟,6分钟,20分钟;④四种水灰比:0.6,1.0,3.0;⑤两种养护条件:标准养护(温度20°C,湿度95%),低温养护(温度10°C,湿度50%);⑥四个养护龄期:3天,7天,14天,28天。
通过以上试验组合进行对比试验,根据设定的影响因素制定试验参数表3-6。
表1 土体物理力学参数。

指标

平均值

含水率(%)

35.10

密度(g/cm3

1.82

孔隙比

1.09

液限(%)

32.10

塑限(%)

15.90

黏聚力(kPa)

9.30

内摩擦角(°)

2.80

表2 HR软土固化剂成分表。

成分名称

氧化钙

二氧化硅

三氧化二铝

氧化镁

三氧化二铁

其它无机物

外加剂

含量

45-60%

20-35%

5-15%

4-10%

1-5%

2-10%

1-5%

表3 不同固化材料及掺量对比试验参数表。

试验样本

配合比

拌和及养护条件

P.O42.5水泥(kg)

HR软土固化剂(kg)

软土(kg)

自来水 (kg)

水灰比

拌和时间(min)

养护条件

P15标

2.25

15

1.35

0.6

20

温度20°C,湿度95%

P20标

3

15

1.8

0.6

20

温度20°C,湿度95%

H15标

2.25

15

1.35

0.6

20

温度20°C,湿度95%

H20标

3

15

1.8

0.6

20

温度20°C,湿度95%

表4 不同搅拌时间对比试验参数表。

试验样本

配合比

拌和及养护条件

P.O42.5水泥(kg)

HR软土固化剂(kg)

软土(kg)

自来水(kg)

水灰比

拌和时间(min)

养护条件

P20标-1

3.0

15

1.8

0.6

1

温度20°C,湿度95%

P20标-3

3.0

15

1.8

0.6

3

温度20°C,湿度95%

P20标-6

3.0

15

1.8

0.6

6

温度20°C,湿度95%

P20标-20

3.0

15

1.8

0.6

20

温度20°C,湿度95%

H20标-1

3.0

15

1.8

0.6

1

温度20°C,湿度95%

H20标-3

3.0

15

1.8

0.6

3

温度20°C,湿度95%

H20标-6

3.0

15

1.8

0.6

6

温度20°C,湿度95%

H20标-20

3.0

15

1.8

0.6

20

温度20°C,湿度95%

表5 不同水灰比对比试验参数表。

试验样本

配合比

拌和时间及养护条件

P.O42.5水泥(kg)

HR固化剂(kg)

土料(kg)

水(kg)

水灰比

拌和时间(min)

养护条件

P20标-0.6

3.00

15.00

1.80

0.6

20

温度20°C,湿度95%

P20标-1.0

3.00

15.00

3.00

1.0

20

温度20°C,湿度95%

P20标-3.0

3.00

15.00

9

3.0

20

温度20°C,湿度95%

H20标-0.6

3.00

15.00

1.80

0.6

20

温度20°C,湿度95%

H20标-1.0

3.00

15.00

3.00

1.0

20

温度20°C,湿度95%

H20标-3.0

3.00

15.00

9

3.0

20

温度20°C,湿度95%

表6 不同养护条件的试验参数表。

试验样本

配合比

拌和时间及养护条件

P.O42.5水泥(kg)

HR固化剂(kg)

软土(kg)

自来水(kg)

水灰比

拌和时间(min)

养护条件

P15标

2.25

15.0

1.4

0.6

20

温度20°C,湿度95%

P15低

2.25

15.0

1.4

0.6

20

温度10°C,湿度50%

P20标

3.00

15.0

1.8

0.6

20

温度20°C,湿度95%

P20低

3.00

15.0

1.8

0.6

20

温度10°C,湿度50%

H15标

2.25

15.0

1.4

0.6

20

温度20°C,湿度95%

H15低

2.25

15.0

1.4

0.6

20

温度10°C,湿度50%

H20标

3.00

15.0

1.8

0.6

20

温度20°C,湿度95%

H20低

3.00

15.0

1.8

0.6

20

温度10°C,湿度50%

3.试验数据分析
3.1.不同固化材料及掺量固化强度对比分析
当固化材料掺量为软土的15%、标准养护条件时,掺HR固化剂的固化强度与掺水泥的固化强度相比,3天强度提高了265%,7天强度提高了219%,14天强度提高了112%,28天强度提高了112%。
当固化材料掺量为软土的20%、标准养护条件时,掺HR固化剂的固化强度与掺水泥的固化强度相比,3天强度提高了241%,7天强度提高了131%,14天强度提高80%,28天强度提高了83%。
通过图1可以看出,HR固化剂的对软土的固化性能与水泥的固化性能相比,28天强度提高了83-112%;HR固化剂的早期固化效果尤为明显,3天强度可提高2.5倍左右。说明在同掺量、同搅拌条件、同养护条件下,HR固化剂与水泥对软土的固化效果相比,固化强度有非常显著的提升。
当固化材料为水泥,充分搅拌标准养护条件下,掺量20%与掺量15%的固化强度相比,3天强度提高了63%,7天强度提高了80%,14天强度提高了58%,28天强度提高了44%。
当固化材料为HR软土固化剂,充分搅拌标准养护条件下,掺量20%与掺量15%的固化强度相比,3天强度提高了52%,7天强度提高了30%,14天强度提高了35%,28天强度提高了25%。
通过图1可以看出,在15%-20%之间固化材料掺量的增加,软土固化强度的增加是显著的,掺加水泥的28天强度提高了44%,与相关研究一致[9-11],掺加HR软土固化剂的28天强度的提高了25%。
图1 两种固化材料及掺量的固化强度折线图。
3.2.不同搅拌时间的对比
当固化材料为水泥掺量20%,标准养护条件下,搅拌时间1分钟制作的试块,3天和7天龄期的3个试块中各有2块没有强度,28天的3个试块中有1个试块没有强度,差异性非常大,总体强度很差。搅拌时间3分钟制作的试块,3天龄期的3个试块均有强度,最小值为平均值的38%,7天龄期的3个试块均有强度,最小值为平均值的64%,28天的3个试块均有强度,最小值为平均值的56%,差异性变小,总体强度一般。搅拌时间6分钟制作的试块,3天、7天、28天龄期的各3个试块强度均差别较小,总体强度较高。搅拌时间20分钟制作的试块,3天、7天、28天龄期的各3个试块强度均差别很小,总体强度高。
掺加水泥20%搅拌1分钟与20分钟的平均强度比,3天龄期为6%,7天龄期为7%,28天龄期为10%;搅拌3分钟与20分钟的平均强度比,3天龄期为47%,7天龄期为53%,28天龄期为50%;搅拌6分钟与20分钟的平均强度比,3天龄期为83%,7天龄期为80%,28天龄期为92%。
当固化材料为HR软土固化剂掺量20%,标准养护条件下,搅拌时间1分钟制作的试块,3天、7天、28天龄期的3个试块中各有1块没有强度,差异性非常大,总体强度差。搅拌时间3分钟制作的试块,3天龄期的3个试块均有强度,最小值为平均值的45%,7天龄期的3个试块均有强度,最小值为平均值的56%,28天的3个试块均有强度,最小值为平均值的73%,差异性较大,总体强度较好。搅拌时间6分钟制作的试块,3天、7天、28天龄期的各3个试块强度均差别较小,总体强度高。搅拌时间20分钟制作的试块,3天、7天、28天龄期的各3个试块强度均差别很小,总体强度很高。
掺加HR软土固化剂20%搅拌1分钟与20分钟的平均强度之比,3天龄期为9%,7天龄期为8%,28天龄期为10%;搅拌3分钟与20分钟的平均强度之比,3天龄期为35%,7天龄期为47%,28天龄期为49%;搅拌6分钟与20分钟的平均强度之比,3天龄期为72%,7天龄期为94%,28天龄期为93%。
由此可以看出,搅拌时间对固化强度的影响非常之大,搅拌1分钟的强度差异性非常大,有些试块强度非常低甚至为零;搅拌3分钟的差异性也较大,平均强度较高;搅拌6分钟的差异不大,平均强度高;搅拌20分钟的强度差别很小,平均强度很高。
图2 水泥四种搅拌时间固化强度柱状图。
图3 HR固化剂四种搅拌时间固化强度柱状图。
3.3.不同水灰比的对比
当固化材料为水泥掺量20%,充分搅拌标准养护条件下,水灰比1.0与0.6的固化强度相比,7天的强度比为57%,14天的强度比为56%,28天的强度比为76%;水灰比3.0与0.6的固化强度相比,7天的强度比为0,14天的强度比为27%,28天的强度比为25%。
当固化材料为HR固化剂掺量20%,充分搅拌标准养护条件下,水灰比1.0与0.6的固化强度相比,7天的强度比为29%,14天的强度比为33%,28天的强度比为53%;水灰比3.0与0.6的固化强度相比,7天的强度比为0,14天的强度比为16%,28天的强度比为20%。
由此可以看出,水灰比对固化强度的影响非常很大,28天龄期固化强度,水灰比1.0较0.6降低24-47%,水灰比3.0较0.6降低75-80%。
图4 三种水灰比的固化强度柱状图。
3.4.不同养护条件的对比
固化材料为水泥掺量15%,低温(温度10°C,湿度50%,下同)养护条件与标准养护条件的固化强度相比,3天强度降低了49%,7天强度降低了42%,14天强度降低了50%,28天强度降低了53%。
固化材料为水泥掺量20%,低温养护条件与标准养护条件的固化强度相比,3天强度降低了49%,7天强度降低了55%,14天强度降低了52%,28天强度降低了51%。
固化材料为HR固化剂掺量15%,低温养护条件与标准养护条件的固化强度相比,3天强度降低了69%,7天强度降低了62%,14天强度降低了56%,28天强度降低了59%。
固化材料为HR固化剂掺量20%时,低温养护条件与标准养护条件的固化强度相比,3天强度降低了60%,7天强度降低了58%,14天强度降低了54%,28天强度降低了55%。
由此可以看出,水泥对软土两种掺量、低温养护条件比标准养护条件的28天固化强度平均降低了52%,HR固化剂对软土两种掺量、低温养护条件比标准养护条件的28天固化强度平均降低了57%,均影响较大。
图5 两种养护条件的固化强度柱状图。
4.结论与思考
通过一些列试验,对影响软土搅拌固化强度的四种影响因素进行了对比和分析,得出以下结论:
(1)固化材料及掺量对固化强度的影响明显:同掺量HR固化剂比P.O42.5水泥的固化强度(28天,下同)提高了83-112%。同种固化材料,掺量20%比掺量15%的固化强度提高了25-44%。
根据该结论,满足同等设计强度条件下,使用HR软土固化剂代替P.O42.5水泥固化软土,可大幅度降低固化材料的用量,可节省用量25-60%,性价比高,低碳环保。
(2)搅拌均匀性对固化强度的影响显著:两种固化材料,两种掺量,搅拌时间1分钟的固化强度差异性非常大,有些强度为0,平均强度仅占充分拌合强度的10%。搅拌时间3分钟的固化强度有较大差异性,平均强度占充分搅拌强度的49-50%。搅拌时间6分钟的固化强度差别较小,平均强度占充分搅拌强度的92-93%。
根据该结论,采用搅拌桩进行地基处理时,搅拌的均匀性是最为关键的因素,受装备性能、工艺、操作规范性等影响大,对软土来说,常规的单轴搅拌工艺及搅拌时间难以获得理想的强度,需要开发和推广新工艺,采用高性能、自动化装备,从源头上解决搅拌均匀性的问题,使搅拌桩经济快速的优势在软土地区能够得以施展。
(3)浆液水灰比对固化强度的影响明显:浆液水灰比1.0与0.6相比,固化强度降低24-47%;浆液水灰比3.0与0.6相比,固化强度降低75-80%。
根据该结论,一方面,施工现场要严格控制好水灰比,保证施工质量;另一方面,想要提高固化强度,降低水灰比是一种途径。
(4)养护环境对固化强度的影响明显:低温养护条件(10°C、50%)比标准养护条件(20°C,95%)的软土固化强度降低了52-57%。
根据该结论,不同区域的地下温度和湿度条件是差别很大的,各地区应应针对本地的地下温度和水文条件,做相应的模拟同条件养护试验,为搅拌固化土的设计和施工提供依据,确保实施后能达到设计要求。
本系列试验为软土地基处理、以软土为基材的固化土设计与施工提供了重要的数据和规律。但本系列试验局限于室内,施工现场受诸多因素影响,包括土质的不均匀性、配比控制的精确程度、搅拌机械装置设计及转速提速等相关参数的差异,以及人为因素等,对软土搅拌固化强度均有影响。后续将在现场进行相关原位试验,为设计和施工提供更加准确的数据支撑。
基金项目
国家自然科学基金项目(51809146);山东省泰山学者项目(tsqn202306234);山东省重点研发计划项目(2018GSF117008)。
References
[1] 倪洁, 陈永辉, 毛斌. 深厚软土区过渡段软基处理方式现场试验研究 [J]. 河北工程大学学报 (自然科学版), 2019, 36(4): 13-18.
[2] 安枫垒, 颜超. 水泥+粉煤灰改良膨胀土路基动态力学特性试验研究 [J]. 工程勘察, 2021, 49(5): 25-30.
[3] 朱世哲, 陈秀亮, 徐日庆. 素混凝土桩和搅拌桩处理城市道路路基的原位试验 [J]. 中国公路学报, 2007, 20(1): 7-13.
[4] 林泓民, 商志阳, 彭劼. 聚丙烯酰胺改善流态固化处理效果的试验研究 [J]. 河北工程大学学报 (自然科学版), 2023, 40(4): 67-73.
[5] 闫楠, 杨俊杰, 刘强, 等. 海水环境下水泥土强度衰减过程室内试验研究 [J]. 土木工程学报, 2017, 50(11): 115-124.
[6] 闫楠, 杨俊杰, 刘强, 等. 原土环境下水泥土强度衰减过程室内试验研究 [J]. 中国海洋大学学报 (自然科学版), 2019, 49(8): 85-92.
[7] 季节, 梁犇, 韩秉烨, 等. 中国道路工程中土壤固化技术综述 [J]. 交通运输工程学报, 2023, 23(2): 47-66.
[8] 张启军, 闫楠, 王永洪, 等. HR软土固化剂的研制与工程应用 [J/OL]. 工程勘察, 1-5.
[9] HUANG Jianxin, KOGBARA R B, HARIHARAN N, et al. A state-of-the art review of polymers used in soil stabilization [J]. Construction and Building Materials, 2021, 305: 124685.
[10] 刘世皎, 樊恒辉, 史祥, 等. BCS土壤固化剂固化土的耐久性研究 [J]. 西北农林科技大学学报 (自然科学版), 2014, 42(12): 214-220.
[11] 乔小雨, 商恩梁, 王彤, 等. 海相淤泥质固化土强度劣化规律试验研究 [J]. 工程勘察, 2024, 52(2): 8-13, 25.
[12] 李佩珂.含铅砷冶金废渣的不同矿物材料固化处理工艺研究 [D]. 绵阳: 西南科技大学, 2023.
[13] 赵志峰, 陈文杰. 不同养护测试条件对微生物加固土体强度的影响 [J]. 林业工程学报, 2023, 8(6): 170-175.
[14] 段晓敏. 不同配比和养护条件下的水泥土的抗压强度研究 [J]. 中国水运, 2023, 23(7): 131-133.
[15] 苏悦, 闫楠, 白晓宇, 等. 预拌流态固化土的工程特性研究进展及应用 [J/OL].材料导报, 1-11 [2024-05-05].
Cite This Article
  • APA Style

    Qijun, Z., Zhiqiang, W., Huijin, X., Jialiang, F., Fengyang, Q., et al. (2024). Experimental Study on Influencing Factors of Mixing Solidification Strength of Marine Soft Soil. Science Discovery, 12(3), 47-53. https://doi.org/10.11648/j.sd.20241203.12

    Copy | Download

    ACS Style

    Qijun, Z.; Zhiqiang, W.; Huijin, X.; Jialiang, F.; Fengyang, Q., et al. Experimental Study on Influencing Factors of Mixing Solidification Strength of Marine Soft Soil. Sci. Discov. 2024, 12(3), 47-53. doi: 10.11648/j.sd.20241203.12

    Copy | Download

    AMA Style

    Qijun Z, Zhiqiang W, Huijin X, Jialiang F, Fengyang Q, et al. Experimental Study on Influencing Factors of Mixing Solidification Strength of Marine Soft Soil. Sci Discov. 2024;12(3):47-53. doi: 10.11648/j.sd.20241203.12

    Copy | Download

  • @article{10.11648/j.sd.20241203.12,
      author = {Zhang Qijun and Wang Zhiqiang and Xiao Huijin and Feng Jialiang and Qiao Fengyang and Bai Xiaoyu},
      title = {Experimental Study on Influencing Factors of Mixing Solidification Strength of Marine Soft Soil
    },
      journal = {Science Discovery},
      volume = {12},
      number = {3},
      pages = {47-53},
      doi = {10.11648/j.sd.20241203.12},
      url = {https://doi.org/10.11648/j.sd.20241203.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sd.20241203.12},
      abstract = {It is a common problem that the soft soil solidified strength by mixing is low. In order to search for the sensitive factors that affect the solidified strength, a certain marine soft soil is taken as an object, four influencing factors, such as solidified material and its dosage, mixing uniformity, water-cement ratio and curing environment, were selected for experimental study, the results show that: (1) the effect of the curing material and its content on the curing strength is obvious: the curing agent of HR soft clay is 183-212% of the cement curing strength, and the curing strength of the same kind of curing material with 20% is 25-44% higher than that of 15%. 2 mixing uniformity has a significant effect on the curing strength: the curing strength of slurry and soft soil after mixing for 1 minute is very different, and the average strength is only 10% of the full mixing strength. The average strength of the three-minute-agitation was 49-50% of the full-agitation strength, while the average strength of the six-minute-agitation strength was 92-93% of the full-agitation strength. 3 the effect of water-cement ratio on the curing strength is obvious: the curing strength decreases by 24-47% when the water-cement ratio is 1.0 vs 0.6, and by 75-80% when the water-cement ratio is 3.0 vs 0.6. 4 curing environment has obvious influence on curing strength: compared with standard curing condition, curing strength of low temperature curing condition is reduced by 52-57%. This study has important guiding significance for soft soil foundation treatment and solidified soil based on soft soil.
    },
     year = {2024}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Experimental Study on Influencing Factors of Mixing Solidification Strength of Marine Soft Soil
    
    AU  - Zhang Qijun
    AU  - Wang Zhiqiang
    AU  - Xiao Huijin
    AU  - Feng Jialiang
    AU  - Qiao Fengyang
    AU  - Bai Xiaoyu
    Y1  - 2024/06/13
    PY  - 2024
    N1  - https://doi.org/10.11648/j.sd.20241203.12
    DO  - 10.11648/j.sd.20241203.12
    T2  - Science Discovery
    JF  - Science Discovery
    JO  - Science Discovery
    SP  - 47
    EP  - 53
    PB  - Science Publishing Group
    SN  - 2331-0650
    UR  - https://doi.org/10.11648/j.sd.20241203.12
    AB  - It is a common problem that the soft soil solidified strength by mixing is low. In order to search for the sensitive factors that affect the solidified strength, a certain marine soft soil is taken as an object, four influencing factors, such as solidified material and its dosage, mixing uniformity, water-cement ratio and curing environment, were selected for experimental study, the results show that: (1) the effect of the curing material and its content on the curing strength is obvious: the curing agent of HR soft clay is 183-212% of the cement curing strength, and the curing strength of the same kind of curing material with 20% is 25-44% higher than that of 15%. 2 mixing uniformity has a significant effect on the curing strength: the curing strength of slurry and soft soil after mixing for 1 minute is very different, and the average strength is only 10% of the full mixing strength. The average strength of the three-minute-agitation was 49-50% of the full-agitation strength, while the average strength of the six-minute-agitation strength was 92-93% of the full-agitation strength. 3 the effect of water-cement ratio on the curing strength is obvious: the curing strength decreases by 24-47% when the water-cement ratio is 1.0 vs 0.6, and by 75-80% when the water-cement ratio is 3.0 vs 0.6. 4 curing environment has obvious influence on curing strength: compared with standard curing condition, curing strength of low temperature curing condition is reduced by 52-57%. This study has important guiding significance for soft soil foundation treatment and solidified soil based on soft soil.
    
    VL  - 12
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Qingdao Yegao Construction Engineering Co., Ltd., Qingdao, China; School of Civil Engineering, Qingdao University of Technology, Qingdao, China

  • Shandong Road and Bridge Group Co., Ltd., Jinan, China

  • Qingdao Ping An Engineering Management Consulting Co., Ltd., Qingdao, China

  • Qingdao Yegao Construction Engineering Co., Ltd., Qingdao, China

  • Qingdao Yegao Construction Engineering Co., Ltd., Qingdao, China

  • School of Civil Engineering, Qingdao University of Technology, Qingdao, China