Research Article | | Peer-Reviewed

J. L. Reveal’s Revelance Re-revealed: Addenda to Newly Required Infrafamilial Ranks in Selected Families

Published in Plant (Volume 13, Issue 3)
Received: 11 July 2025     Accepted: 24 July 2025     Published: 13 August 2025
Views:       Downloads:
Abstract

This paper presents a preliminary set of addenda establishing new infrafamilial taxa at the ranks of subfamilies, supertribe, tribes and subtribes within selected families of flowering plants mainly for wild and cultivated flora in China and East Asia. The work aims to supplement existing classifications mainly in the paradigm of Linnaean hierarchy, enhancing the balance and phylogenetic coherence of the hierarchical structure in these families. Although there are no widely accepted tenets for designating so called appropriate ranks, the principle set by Angiosperm Phylogeny Group II of treating monogeneric/oligogeneric families as synonyms to their sister groups is here followed and applied when erecting or merging infrafamilial ranks. The addenda cover 70 families (e.g., Anacardiaceae, Apocynaceae, Fabaceae, and Rubiaceae), in which 214 new names (i.e., 23 new subfamilies, 1 new supertribe, 76 new tribes and 115 new subtribes) are validated whether based on existing reference or newly designated types, with diagnoses and included subordinate taxa provided. These newly established taxa, while not necessarily mandatory for use, provide essential, phylogenetically informed options for organizing taxa below the family level and improving the hierarchical structure of angiosperm classification in order to facilitate future study of systematics and compilation of data for plant biodiversity.

Published in Plant (Volume 13, Issue 3)
DOI 10.11648/j.plant.20251303.13
Page(s) 138-165
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2025. Published by Science Publishing Group

Keywords

Infrafamilial Rank, New Subfamily, New Supertribe, New Tribe, New Subtribe

References
[1] Riedl, R. Biology of Knowledge: The evolutionary basis of reason. Wiley, New York; 1984, pp. 252.
[2] Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., Donoghue, M. J. Plant systematics: A phylogenetic approach (2nd ed). Sinauer associates, Sunderland (Mass.); 2002, pp. 576.
[3] Stuessy, T. F. Plant taxonomy: The systematic evaluation of comparative data (2nd ed). Columbia University Press, New York; 2009, pp. 539.
[4] Clayton, W. D. The logarithmic distribution of angiosperm families. Kew Bull. 1974, 29(2), 271-279.
[5] Backlund, A., Bremer, K. To be or not to be - principles of classification and monotypic plant families. Taxon 1998, 47(2), 391-400.
[6] Reveal, J. L. A checklist of familial and suprafamilial names for extant vascular plants. Phytotaxa 2013, 6, 1-402.
[7] Reveal, J. L. Newly required infrafamilial names mandated by changes in the Code of Nomenclature For Algae, Fungi, and Plants. Phytoneuron 2012, 2012-33, 1-31.
[8] The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 2003, 141(4), 399-436.
[9] Nesom, G. L. Revised subtribal classification of Astereae (Asteraceae). Phytoneuron 2020, 2020-53, 1-39.
[10] Turland, N., Wiersema, J., Barrie, F., Greuter, W., Hawksworth, D., Herendeen, P., Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T., McNeill, J., Monro, A., Prado, J., Price, M., Smith, G. (eds.) International Code of Nomenclature for algae, fungi, and plants. Koeltz Botanical Books, Glashütten; 2018, pp. 254.
[11] McDade, L. A., Daniel, T. F., Kiel, C. A. Toward a comprehensive understanding of phylogenetic relationships among lineages of Acanthaceae s.l. (Lamiales). Amer. J. Bot. 2008, 95(9), 1136-1152.
[12] Breteler, F. J., Wieringa, J. J. Novitates Gabonenses 94 Salpingifera (Achariaceae) a new monotypic and endemic genus from Gabon. Blumea 2024, 69(2): 196-200.
[13] Zmarzty, S., Bailey, P. C., Maurin, O., Epitawalage, N., Roy, S. R., Forest, F., Baker, W. J. Nuclear phylogenomics and revised tribal classification of Achariaceae, with a redefinition of Oncoba (Salicaceae). Bot. J. Linn. Soc. 2025, in press.
[14] Gerbaulet, M. One or many genera in Mesembryanthemoideae (Aizoaceae)? Discussion of a conflict in genus perception. Bradleya 2012, 30, 187-198.
[15] Borsch, T., Flores‐Olvera, H., Zumaya, S., Müller, K. Pollen characters and DNA sequence data converge on a monophyletic genus Iresine (Amaranthaceae, Caryophyllales) and help to elucidate its species diversity. Taxon 2018, 67(5), 944-976.
[16] Sage, R. F., Sage, T. L., Pearcy, R. W., Borsch, T. The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. Amer. J. Bot. 2007, 94(12), 1992-2003.
[17] Kadereit, G., Borsch, T., Weising, K., Freitag, H. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Pl. Sci. 2003, 164(6), 959-986.
[18] Meerow, A. Classification and phylogeny of Amaryllidaceae, the modern synthesis and the road ahead: A review. Bol. Soc. Argent. Bot. 2023, 58(3), 1-19.
[19] Joyce, E. M., Appelhans, M. S., Buerki, S., Cheek, M., De Vos, J. M., Pirani, J. R., Zuntini, A. R., Bachelier, J. B., Bayly, M. J., Callmander, M. W., Devecchi, M. F., Pell, S. K., Groppo, M., Lowry, P. P., Mitchell, J., Siniscalchi, C. M., Munzinger, J., Orel, H. K., Pannell, C. M., Nauheimer, L., Sauquet, H., Weeks, A., Muellner-Riehl, A. N., Leitch, I. J., Maurin, O., Forest, F., Nargar, K., Thiele, K. R., Baker, W. J., Crayn, D. M., Crayn, D. M. Phylogenomic analyses of Sapindales support new family relationships, rapid Mid-Cretaceous hothouse diversification, and heterogeneous histories of gene duplication. Frontiers Pl. Sci. (Online journal) 2023, 14, 1063174.
[20] Wannan, B. S. Analysis of generic relationships in Anacardiaceae. Blumea 2006, 51(1), 165-195.
[21] Cole, T. C. H., Bachelier, J. B. 2023. Anacardiaceae Phylogeny Poster (AnaPP, 2023). Available from:
[22] Chatrou, L. W., Pirie, M. D., Erkens, R. H. J., Couvreur, T. L. P., Neubig, K. M., Abbott, J. R., Mols, J. B., Maas, J. W., Saunders, R. M. K., Chase, M. W. A new subfamilial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics: Annonaceae phylogenetics and classification. Bot. J. Linn. Soc. 2012, 169(1): 5-40.
[23] Fishbein, M., Livshultz, T., Straub, S. C. K., Simões, A. O., Boutte, J., McDonnell, A., Foote, A. Evolution on the backbone: Apocynaceae phylogenomics and new perspectives on growth forms, flowers, and fruits. Amer. J. Bot. 2018, 105(3), 495-513.
[24] Wang, Y., Zhang, C.-F., Ochieng Odago, W., Jiang, H., Yang, J.-X., Hu, G.-W., Wang, Q.-F. Evolution of 101 Apocynaceae plastomes and phylogenetic implications. Molec. Phylogen. Evol. 2023, 180(Suppl 1), 107688.
[25] Antonelli, A., Clarkson, J. J., Kainulainen, K., Maurin, O., Brewer, G. E., Davis, A. P., Epitawalage, N., Goyder, D. J., Livshultz, T., Persson, C., Pokorny, L., Straub, S. C. K., Struwe, L., Zuntini, A. R., Forest, F., Baker, W. J. Settling a family feud: A high‐level phylogenomic framework for the Gentianales based on 353 nuclear genes and partial plastomes. Amer. J. Bot. 2021, 108(7), 1143-1165.
[26] Zhao, L., Yang, Y.-Y., Qu, X.-J., Ma, H., Hu, Y., Li, H.-T., Yi, T.-S., Li, D.-Z. Phylotranscriptomic analyses reveal multiple whole-genome duplication events, the history of diversification and adaptations in the Araceae. Ann. Bot. (Oxford) 2023, 131(1), 199-214.
[27] Haigh, A. L., Gibernau, M., Maurin, O., Bailey, P., Carlsen, M. M., Hay, A., Leempoel, K., McGinnie, C., Mayo, S., Morris, S., Pérez‐Escobar, O. A., Yeng, W. S., Zuluaga, A., Zuntini, A. R., Baker, W. J., Forest, F. Target sequence data shed new light on the infrafamilial classification of Araceae. Amer. J. Bot. 2023, 110(2), e16117.
[28] Pimenov, M. G., Constance, L. Nomenclature of suprageneric taxa in Umbelliferae/Apiaceae. Taxon 1985, 34(3), 493-501.
[29] Henwood, M. J., Lu-Irving, P., Perkins, A. J. Can molecular systematics provide insights into aspects of the reproductive biology of Trachymene Rudge (Araliaceae)? Pl. Diversity Evol. 2010, 128(1-2), 85-110.
[30] Dransfield, J., Uhl, N. W., Asmussen, C. B., Baker, W. J., Harley, M. M., Lewis, C. E. Genera Palmarum: The evolution and classification of palms (2nd ed). Kew publ., Richmond; 2008, pp. 732.
[31] Martínez-Azorín, M., Crespo, M. B., Juan, A., Fay, M. F. Molecular phylogenetics of subfamily Ornithogaloideae (Hyacinthaceae) based on nuclear and plastid DNA regions, including a new taxonomic arrangement. Ann. Bot. (Oxford) 2011, 107(1), 1-37.
[32] Martínez‐Azorín, M., Crespo, M. B., Alonso‐Vargas, M. Á., Pinter, M., Crouch, N. R., Dold, A. P., Mucina, L., Pfosser, M., Wetschnig, W. Molecular phylogenetics of subfamily Urgineoideae (Hyacinthaceae): Toward a coherent generic circumscription informed by molecular, morphological, and distributional data. J. Syst. Evol. 2023, 61(1), 42-63.
[33] Pires, J. C., Fay, M. F., Davis, W. S., Hufford, L., Rova, J., Chase, M. W., Sytsma, K. J. Molecular and morphological phylogenetic analyses of Themidaceae (Asparagales). Kew Bull. 2001, 56(3), 601-626.
[34] Le, T. M. L., Ly, N. S., Pham, V. T., Nguyen, P. H., Tran, D. B., Dong, L., Averyanov, L. V., Tanaka, N., Nguyen, S. K. Phylogenomics of Convallarioideae (Asparagaceae), with emphasis on Vietnamese species. Acad. J. Biol. 2023, 45(4), 93-109.
[35] Olmstead, R. G., Zjhra, M. L., Lohmann, L. G., Grose, S. O., Eckert, A. J. A molecular phylogeny and classification of Bignoniaceae. Amer. J. Bot. 2009, 96(9), 1731-1743.
[36] Chacón, J., Luebert, F., Hilger, H. H., Ovchinnikova, S., Selvi, F., Cecchi, L., Guilliams, C. M., Hasenstab-Lehman, K., Sutorý, K., Simpson, M. G., Weigend, M. The borage family (Boraginaceae s.str.): A revised infrafamilial classification based on new phylogenetic evidence, with emphasis on the placement of some enigmatic genera. Taxon 2016, 65(3), 523-546.
[37] Vasile, M.-A., Böhnert, T., Jeiter, J., Cardoso, D., Moonlight, P. W., Weigend, M. An updated phylogeny of Boraginales based on the Angiosperms353 probe set: A roadmap for understanding morphological evolution. Ann. Bot. (Oxford) 2025, in press.
[38] Hendriks, K. P., Kiefer, C., Al-Shehbaz, I. A., Bailey, C. D., Hooft van Huysduynen, A., Nikolov, L. A., Nauheimer, L., Zuntini, A. R., German, D. A., Franzke, A., Koch, M. A., Lysak, M. A., Toro-Núñez, Ó., Özüdoğru, B., Invernon, V. R., Walden, N., Maurin, O., Hay, N. M., Shushkov, P., Mandáková, T., Thulin, M., Windham, M. D., Rešetnik, I., Španiel, S., Ly, E., Pires, J. C., Harkess, A., Neuffer, B., Vogt, R., Bräuchler, C., Rainer, H., Janssens, S. B., Schmull, M., Forrest, A., Guggisberg, A., Zmarzty, S., Lepschi, B. J., Scarlett, N., Stauffer, F. W., Schönberger, I., Heenan, P., Baker, W. J., Forest, F., Mummenhoff, K., Lens, F. Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset. Curr. Biol. 2023, 33(19), 4052-4068.
[39] Hu, H., Hu, Q.-J., Al-Shehbaz, I. A., Luo, X., Zeng, T.-T., Guo, X.-Y., Liu, J.-Q. Species delimitation and interspecific relationships of the genus Orychophragmus (Brassicaceae) inferred from whole chloroplast genomes. Frontiers Pl. Sci. (Online journal) 2016, 7, 01826.
[40] German, D. A., Hendriks, K. P., Koch, M. A., Lens, F., Lysak, M. A., Bailey, C. D., Mummenhoff, K., Al-Shehbaz, I. A. An updated classification of the Brassicaceae (Cruciferae). PhytoKeys 2023, 220, 127-144.
[41] Shipunov, A., Shipunova, E. Haptanthus story: Rediscovery of enigmatic flowering plant from Honduras. Amer. J. Bot. 2011, 98(4): 761-763.
[42] Mayta Anco, L. F., Molinari-Novoa, E. A. L'intégration du genre Leuenbergeria Lodé dans sa propre sous-famille, Leuenbergerioideae Mayta & Mol. Nov., subfam. nov. Succulentopi@ 2015, 12, 6-7.
[43] Korotkova, N., Aquino, D., Arias, S., Eggli, U., Franck, A., Gómez-Hinostrosa, C., Guerrero, P. C., Hernández, H. M., Kohlbecker, A., Köhler, M., Luther, K., Majure, L. C., Müller, A., Metzing, D., Nyffeler, R., Sánchez, D., Schlumpberger, B., Berendsohn, W. G. Cactaceae at Caryophyllales. org - a dynamic online species-level taxonomic backbone for the family. Willdenowia 2021, 51(2), 251-270.
[44] Guerrero, P. C., Majure, L. C., Cornejo-Romero, A., Hernández-Hernández, T. Phylogenetic relationships and evolutionary trends in the cactus family. J. Heredity 2019, 110(1), 4-21.
[45] Pozner, R. E., Johnson, L. A., Denham, S. S. Evolution of flower morphology and a natural re‐arrangement of Calyceraceae. Taxon 2021, 70(3), 589-619.
[46] Pozner, R., Zijlstra, G., Johnson, L. A., Moroni, P. Nomenclatural corrections in Calyceraceae. Novon 2024, 32, 135-140.
[47] Lin, X.-H., Xie, S.-Y., Ma, D.-K., Liao, S., Ge, B.-J., Zhou, S.-L., Zhao, L., Xu, C., Hong, D.-Y., Liu, B.-B. Phylogenomic insights into Adenophora and its allies (Campanulaceae): Revisiting generic delimitation and hybridization dynamics. Pl. Diversity 2025, in press.
[48] Fu, X., Liu, S., Van Velzen, R., Stull, G. W., Tian, Q., Li, Y., Folk, R. A., Guralnick, R. P., Kates, H. R., Jin, J., Li, Z., Soltis, D. E., Soltis, P. S., Yi, T. Phylogenomic analysis of the hemp family (Cannabaceae) reveals deep cyto‐nuclear discordance and provides new insights into generic relationships. J. Syst. Evol. 2023, 61(5), 806-826.
[49] Yang, M.-Q., Li, D.-Z., Wen, J., Yi, T.-S. Phylogeny and biogeography of the amphi-Pacific genus Aphananthe. PLOS ONE 2017, 12(2), e0171405.
[50] Hall, J. C. Systematics of Capparaceae and Cleomaceae: An evaluation of the generic delimitations of Capparis and Cleome using plastid DNA sequence data. Botany 2008, 86(7), 682-696.
[51] Su, J.-X., Wang, W., Zhang, L.-B., Chen, Z.-D. Phylogenetic placement of two enigmatic genera, Borthwickia and Stixis, based on molecular and pollen data, and the description of a new family of Brassicales, Borthwickiaceae. Taxon 2012, 61(3), 601-611.
[52] Wang, H., Morales‐Briones, D. F., Moore, M. J., Wen, J., Wang, H. A phylogenomic perspective on gene tree conflict and character evolution in Caprifoliaceae using target enrichment data, with Zabelioideae recognized as a new subfamily. J. Syst. Evol. 2021, 59(5), 897-914.
[53] Bell, C. D. Preliminary phylogeny of Valerianaceae (Dipsacales) inferred from nuclear and chloroplast DNA sequence data. Molec. Phylogen. Evol. 2004, 31(1), 340-350.
[54] Li, Y.-L., Huang, J.-X., Yao, G. Characterization of the complete plastid genome of Psammosilene tunicoides (Caryophyllaceae), an endangered medical herb endemic to south-western China. Mitochondrial DNA, Part B. Resour. 2019, 4(2), 2798-2799.
[55] Fior, S., Karis, P. O., Casazza, G., Minuto, L., Sala, F. Molecular phylogeny of the Caryophyllaceae (Caryophyllales) inferred from chloroplast matK and nuclear rDNA ITS sequences. Amer. J. Bot. 2006, 93(3), 399-411.
[56] Simmons, M. P., Lombardi, J. A., Biral, L. Classification of the Celastrales based on integration of genomic, morphological, and Sanger-Sequence characters. Syst. Bot. 2023, 48(2), 283-299.
[57] Patchell, M. J., Roalson, E. H., Hall, J. C. Resolved phylogeny of Cleomaceae based on all three genomes. Taxon 2014, 63(2), 315-328.
[58] Pellegrini, M. O. O. Systematics of Commelinales focusing on neotropical lineages. Unpublished doctoral dissertation, University of São Paulo, 2019.
[59] Simões, A. R. G., Eserman, L. A., Zuntini, A. R., Chatrou, L. W., Utteridge, T. M. A., Maurin, O., Rokni, S., Roy, S., Forest, F., Baker, W. J., Stefanović, S. A bird’s eye view of the systematics of Convolvulaceae: Novel insights from nuclear genomic data. Frontiers Pl. Sci. (Online Journal) 2022, 13, 889988.
[60] Du, Z., (Jenny) Xiang, Q., Cheng, J., Zhou, W., Wang, Q., Soltis, D. E., Soltis, P. S. An updated phylogeny, biogeography, and PhyloCode‐based classification of Cornaceae based on three sets of genomic data. Amer. J. Bot. 2023, 110(2), e16116.
[61] Du, Z.-Y., Xiang, Q.-Y., Soltis, P. S., Soltis, D. E. Addition to “An updated phylogeny, biogeography, and PhyloCode-based classification of Cornaceae based on three sets of genomic data”. Bull. Phylogenet. Nomencl. 2024, 1(3), 83-92.
[62] Chen, J., Zeng, S.-J., Zeng, L.-Y., Nguyen, K. S., Yan, J.-W., Liu, H., Xia, N.-H. Parahellenia, a new genus segregated from Hellenia (Costaceae) based on phylogenetic and morphological evidence. Pl. Diversity 2022, 44(4), 389-405.
[63] Zhang, L.-B., Simmons, M. P. Phylogeny and delimitation of the Celastrales inferred from nuclear and plastid genes. Syst. Bot. 2006, 31(1), 122-137.
[64] Rose, J. P., Kleist, T. J., Löfstrand, S. D., Drew, B. T., Schönenberger, J., Sytsma, K. J. Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. Molec. Phylogen. Evol. 2018, 122, 59-79.
[65] Kron, K. A., Judd, W. S., Stevens, P. F., Crayn, D. M., Anderberg, A. A., Gadek, P. A., Quinn, C. J., Luteyn, J. L. Phylogenetic classification of Ericaceae: Molecular and morphological evidence. Bot. Rev. (London) 2002, 68(3), 335-423.
[66] LPWG. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). Taxon 2017, 66(1), 44-77.
[67] Zhao, Y.-Y., Zhang, R., Jiang, K.-W., Qi, J., Hu, Y., Guo, J., Zhu, R.-B., Zhang, T.-K., Egan, A. N., Yi, T.-S., Huang, C.-H., Ma, H. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Molec. Pl. 2021, 14(5), 748-773.
[68] Bruneau, A., De Queiroz, L. P., Ringelberg, J. J., Borges, L. M., Bortoluzzi, R. L. D. C., Brown, G. K., Cardoso, D. B. O. S., Clark, R. P., Conceição, A. D. S., Cota, M. M. T., Demeulenaere, E., De Stefano, R. D., Ebinger, J. E., Ferm, J., Fonseca-Cortés, A., Gagnon, E., Grether, R., Guerra, E., Haston, E., Herendeen, P. S., Hernández, H. M., Hopkins, H. C. F., Huamantupa-Chuquimaco, I., Hughes, C. E., Ickert-Bond, S. M., Iganci, J., Koenen, E. J. M., Lewis, G. P., De Lima, H. C., De Lima, A. G., Luckow, M., Marazzi, B., Maslin, B. R., Morales, M., Morim, M. P., Murphy, D. J., O’Donnell, S. A., Oliveira, F. G., Oliveira, A. C. D. S., Rando, J. G., Ribeiro, P. G., Ribeiro, C. L., Santos, F. D. S., Seigler, D. S., Da Silva, G. S., Simon, M. F., Soares, M. V. B., Terra, V. Advances in Legume Systematics 14. Classification of Caesalpinioideae. Part 2: Higher-level classification. PhytoKeys 2024, 240, 1-552.
[69] de La Estrella, M., Forest, F., Klitgård, B., Lewis, G. P., Mackinder, B. A., de Queiroz, L. P., Wieringa, J. J., Bruneau, A. A new phylogeny-based tribal classification of subfamily Detarioideae, an early branching clade of florally diverse tropical arborescent legumes. Sci. Rep. 2018, 8(1): 6884.
[70] Zuntini, A. R., Carruthers, T., Maurin, O. et al. Phylogenomics and the rise of the angiosperms. Nature 629, 843–850 (2024).
[71] Gregório, B. D. S., Carvalho, C. S., Ramos, G., Rocha, L., Stirton, C. H., De Lima, H. C., Zartman, C. E., Lewis, G. P., Torke, B. M., Snak, C., Higuita, H. A. D., De Queiroz, L. P., Cardoso, D. A molecular phylogeny of the early-branching Genistoid lineages of papilionoid legumes reveals a new Amazonian genus segregated from Clathrotropis. Bot. J. Linn. Soc. 2024, 205(1): 1-14.
[72] Refulio‐Rodriguez, N. F., Olmstead, R. G. Phylogeny of Lamiidae. Amer. J. Bot. 2014, 101(2), 287-299.
[73] Le Roux, J. J., Geerts, S., Ivey, P., Krauss, S., Richardson, D. M., Suda, J., Wilson, J. R. U. Molecular systematics and ecology of invasive kangaroo paws in South Africa: Management implications for a horticulturally important genus. Biol. Invas. 2010, 12(12), 3989-4002.
[74] Chen, L.-Y., Zhao, S.-Y., Mao, K.-S., Les, D. H., Wang, Q.-F., Moody, M. L. Historical biogeography of Haloragaceae: An out-of-Australia hypothesis with multiple intercontinental dispersals. Molec. Phylogen. Evol. 2014, 78, 87-95.
[75] Chen, L.-Y., Chen, J.-M., Gituru, R. W., Wang, Q.-F. Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evol. Biol. 2012, 12(1), 30.
[76] Joyce, E. M., Crayn, D. M., Lam, V. K. Y., Gerelle, W. K., Graham, S. W., Nauheimer, L. Evolution of Geosiris (Iridaceae): Historical biogeography and plastid-genome evolution in a genus of non-photosynthetic tropical rainforest herbs disjunct across the Indian Ocean. Austral. Syst. Bot. 2018, 31(6), 504-522.
[77] Kamra, K., Jung, J.-Y., Kim, J.-H. A phylogenomic study of Iridaceae Juss. based on complete plastid genome sequences. Frontiers Pl. Sci. (Online Journal) 2023, 14, 1066708.
[78] Inglis, P. W., Cavalcanti, T. B., Facco, M. G., Bakker, F. T., Graham, S. A. A comprehensive genus-level phylogeny and biogeographical history of the Lythraceae based on whole plastome sequences. Ann. Bot. (Oxford) 2023, 132(2), 293-318.
[79] Graham, S. A., Hall, J., Sytsma, K., Shi, S. Phylogenetic analysis of the Lythraceae based on four gene regions and morphology. Int. J. Pl. Sci. 2005, 166(6), 995-1017.
[80] Wilkie, P., Clark, A., Pennington, R. T., Cheek, M., Bayer, C., Wilcock, C. C. Phylogenetic relationships within the subfamily Sterculioideae (Malvaceae/Sterculiaceae-Sterculieae) using the chloroplast gene ndhF. Syst. Bot. 2006, 31(1), 160-170.
[81] Fernandes, G. D. C., Luna, N. K., Fraga, E., Barros, M. C., Chase, M. W., Pessoa, E. M. Molecular phylogenetics of Maranta (Marantaceae: Zingiberales): Non-monophyly and support for a wider circumscription. Bot. J. Linn. Soc. 2023, 202(2), 181-194.
[82] Winterfeld, G., Paule, J., Hoffmann, M. H., Ley, A., Röser, M. Antagonistic effects of whole-genome duplications and dysploidy on genome sizes in the pantropical monocot family Marantaceae: Consequences in the light of a new molecular phylogeny. Curr. Pl. Biol. 2020, 24, 100181.
[83] Borchsenius, F., Stella Suárez, L., Prince, L. M. Molecular phylogeny and redefined generic limits of Calathea (Marantaceae). Syst. Bot. 2012, 37(3), 620-635.
[84] Kim, C.-K., Kim, S.-C., Kim, J.-H. Historical biogeography of Melanthiaceae: A case of out-of-North America through the Bering Land Bridge. Frontiers Pl. Sci. (Online Journal) 2019, 10, 00396.
[85] Heads, M. Biogeography and ecology in a pantropical family, the Meliaceae. Gard. Bull. Singapore 2019, 71(Suppl. 2), 335-461.
[86] Thulin, M., Moore, A. J., El-Seedi, H., Larsson, A., Christin, P.-A., Edwards, E. J. Phylogeny and generic delimitation in Molluginaceae, new pigment data in Caryophyllales, and the new family Corbichoniaceae. Taxon 2016, 65(4), 775-793.
[87] Christenhusz, M. J. M., Brockington, S. F., Christin, P.-A., Sage, R. F. On the disintegration of Molluginaceae: A new genus and family (Kewa, Kewaceae) segregated from Hypertelis, and placement of Macarthuria in Macarthuriaceae. Phytotaxa 2014, 181(4), 238-242.
[88] Thulin, M., Bidault, E., Boullet, V., Heidari, N., Hivert, J., Larsson, A. Phylogeny and systematics of Paramollugo (Molluginaceae). Candollea 2024, 79(2).
[89] The Neotropical Myrtaceae Working Group. Towards a species‐level phylogeny for neotropical Myrtaceae: Notes on topology and resources for future studies. Amer. J. Bot. 2024, 111(5), e16330.
[90] Douglas, N. A., Manos, P. S. Molecular phylogeny of Nyctaginaceae: Taxonomy, biogeography, and characters associated with a radiation of xerophytic genera in North America. Amer. J. Bot. 2007, 94(5), 856-872.
[91] Overson, R. P., Johnson, M. G., Bechen, L. L., Kinosian, S. P., Douglas, N. A., Fant, J. B., Hoch, P. C., Levin, R. A., Moore, M. J., Raguso, R. A., Wagner, W. L., Skogen, K. A., Wickett, N. J. A phylogeny of the evening primrose family (Onagraceae) using a target enrichment approach with 303 nuclear loci. BMC Ecol. Evol. 2023, 23(1), 66.
[92] Ng, Y. P., Schuiteman, A., Pedersen, H. Æ., Petersen, G., Watthana, S., Seberg, O., Pridgeon, A. M., Cribb, P. J., Chase, M. W. Phylogenetics and systematics of Eria and related genera (Orchidaceae: Podochileae). Bot. J. Linn. Soc. 2018, 186(2), 179-201.
[93] Li, M.-H., Zhang, G.-Q., Lan, S.-R., Liu, Z.-J., China Phylogeny Consortium. A molecular phylogeny of Chinese orchids. J. Syst. Evol. 2016, 54(4), 349-362.
[94] Li, M.-H., Zhang, G.-Q., Liu, Z.-J., Lan, S.-R. Subtribal relationships in Cymbidieae (Epidendroideae, Orchidaceae) reveal a new subtribe, Dipodiinae, based on plastid and nuclear coding DNA. Phytotaxa 2016, 246(1): 37-48.
[95] Yu, W.-B., Randle, C. P., Lu, L., Wang, H., Yang, J.-B., de Pamphilis, C. W., Corlett, R. T., Li, D.-Z. The hemiparasitic Plant Phtheirospermum (Orobanchaceae) is polyphyletic and contains cryptic species in the Hengduan Mountains of southwest China. Frontiers Pl. Sci. (Online Journal) 2018, 9, 00142.
[96] Li, X.-P., Zhao, Y.-M., Tu, X.-D., Li, C.-R., Zhu, Y.-T., Zhong, H., Liu, Z.-J., Wu, S.-S., Zhai, J.-W. Comparative analysis of plastomes in Oxalidaceae: Phylogenetic relationships and potential molecular markers. Pl. Diversity 2021, 43(4), 281-291.
[97] Pillon, Y., Crayn, D., Streiff, S. J. R., De Vos, J. M. A suprageneric classification of Oxalidales. Swainsona 2024, 38(6), 153-160.
[98] Buerki, S., Callmander, M. W., Devey, D. S., Chappell, L., Gallaher, T., Munzinger, J., Haevermans, T., Forest, F. Straightening out the screw­pines: A first step in understanding phylogenetic relationships within Pandanaceae. Taxon 2012, 61(5), 1010-1020.
[99] Peng, H., Xiang, K., Lian, L., Liu, B., Erst, A. S., Gao, T., Ortiz, R. D. C., Jabbour, F., Chen, Z., Wang, W. A revised tribal classification of Papaveraceae (poppy family) based on molecular and morphological data. Taxon 2024, 73(3), 762-783.
[100] Kathriarachchi, H., Hoffmann, P., Samuel, R., Wurdack, K. J., Chase, M. W. Molecular phylogenetics of Phyllanthaceae inferred from five genes (plastid atpB, matK, 3′ndhF, rbcL, and nuclear PHYC). J. Syst. Evol. 2005, 36(1), 112-134.
[101] Hoffmann, P., Kathriarachchi, H., Wurdack, K. J. A phylogenetic classification of Phyllanthaceae (Malpighiales; Euphorbiaceae sensu lato). Kew Bull. 2006, 61(1), 37-53.
[102] Tippery, N. P., Gonzalez-Socoloske, D., Leliaert, F., Thompson, T. A., Scatigna, A. V., Souza, V. C. Systematics and biogeography of Bacopa (Plantaginaceae). J. Syst. Evol. 2024, 310(1).
[103] Ogutcen, E., Vamosi, J. C. A phylogenetic study of the tribe Antirrhineae: Genome duplications and long‐distance dispersals from the Old World to the New World. Amer. J. Bot. 2016, 103(6), 1071-1081.
[104] Koutroumpa, K., Theodoridis, S., Warren, B. H., Jiménez, A., Celep, F., Doğan, M., Romeiras, M. M., Santos‐Guerra, A., Fernández‐Palacios, J. M., Caujapé‐Castells, J., Moura, M., Menezes De Sequeira, M., Conti, E. An expanded molecular phylogeny of Plumbaginaceae, with emphasis on Limonium (sea lavenders): Taxonomic implications and biogeographic considerations. Ecol. Evol. 2018, 8(24), 12397-12424.
[105] Malekmohammadi, M., Koutroumpa, K., Crespo, M. B., Domina, G., Korotkova, N., Akhani, H., Von Mering, S., Borsch, T., Berendsohn, W. G. A taxonomic backbone for the Plumbaginaceae (Caryophyllales). PhytoKeys 2024, 243, 67-103.
[106] Ruhfel, B. R., Larson, D. A., Koenig, N., Rutishauser, R., Bove, C. P., Philbrick, C. T. Plastid Phylogenomic analysis of Podostemaceae with an emphasis on neotropical Podostemoideae. Syst. Bot. 2024, 49(3), 580-616.
[107] Koi, S., Kita, Y., Hirayama, Y., Rutishauser, R., Huber, K. A., Kato, M. Molecular phylogenetic analysis of Podostemaceae: Implications for taxonomy of major groups. Bot. J. Linn. Soc. 2012, 169(3), 461-492.
[108] Koi, S., Won, H., Kato, M. Two new genera of Podostemaceae from northern central Laos: Saltational evolution and enigmatic morphology. J. Pl. Res. 2019, 132(1), 19-31.
[109] Larson, D. A., Chanderbali, A. S., Maurin, O., Gonçalves, D. J. P., Dick, C. W., Soltis, D. E., Soltis, P. S., Fritsch, P. W., Clarkson, J. J., Grall, A., Davies, N. M. J., Larridon, I., Kikuchi, I. A. B. S., Forest, F., Baker, W. J., Smith, S. A., Utteridge, T. M. A. The phylogeny and global biogeography of Primulaceae based on high-throughput DNA sequence data. Molec. Phylogen. Evol. 2023, 182, 107702.
[110] Wang, W., Lu, A.-M., Ren, Y., Endress, M. E., Chen, Z.-D. Phylogeny and classification of Ranunculales: Evidence from four molecular loci and morphological data. Perspect. Pl. Ecol. Evol. Syst. 2009, 11(2), 81-110.
[111] Briggs, B. G., Marchant, A. D., Perkins, A. J. Phylogeny of the restiid clade (Poales) and implications for the classification of Anarthriaceae, Centrolepidaceae and Australian Restionaceae. Taxon 2014, 63(1), 24-46.
[112] Fay, M. F., Lledo, M. D., Richardson, J. E., Rye, B. L., Hopper, S. D. Molecular data confirm the affinities of the south-west Australian endemic Granitites with Alphitonia (Rhamnaceae). Kew Bull. 2001, 56(3), 669-675.
[113] Richardson, J. E., Fay, M. F., Cronk, Q. C. B., Bowman, D., Chase, M. W. A phylogenetic analysis of Rhamnaceae using rbcL and trnL‐F plastid DNA sequences. Amer. J. Bot. 2000, 87(9), 1309-1324.
[114] Wang, G.-T., Shu, J.-P., Jiang, G.-B., Chen, Y.-Q., Wang, R.-J. Morphology and molecules support the new monotypic genus Fenghwaia (Rhamnaceae) from south China. PhytoKeys 2021, 171, 25-35.
[115] Potter, D., Still, S. M., Grebenc, T., Ballian, D., Božič, G., Franjiæ, J., Kraigher, H. Phylogenetic relationships in tribe Spiraeeae (Rosaceae) inferred from nucleotide sequence data. Pl. Syst. Evol. 2007, 266(1-2), 105-118.
[116] Eriksson, T., Lundberg, M., Töpel, M., Östensson, P., Smedmark, J. E. E. Sibbaldia: A molecular phylogenetic study of a remarkably polyphyletic genus in Rosaceae. Pl. Syst. Evol. 2015, 301(1), 171-184.
[117] Töpel, M., Lundberg, M., Eriksson, T., Eriksen, B. Molecular data and ploidal levels indicate several putative allopolyploidization events in the genus Potentilla (Rosaceae). PLoS Currents 2011, 3, RRN1237.
[118] Potter, D., Eriksson, T., Evans, R. C., Oh, S., Smedmark, J. E. E., Morgan, D. R., Kerr, M., Robertson, K. R., Arsenault, M., Dickinson, T. A., Campbell, C. S. Phylogeny and classification of Rosaceae. Pl. Syst. Evol. 2007, 266(1-2), 5-43.
[119] Xiang, Y.-Z., Huang, C.-H., Hu, Y., Wen, J., Li, S.-S., Yi, T.-S., Chen, H.-Y., Xiang, J., Ma, H. Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication. Molec. Biol. Evol. 2016, msw242.
[120] Wang, H., Li, X.-Y., Jiang, Y., Jin, Z.-T., Ma, D.-K., Liu, B., Xu, C., Ge, B.-J., Wang, T., Fan, Q., Jin, S.-H., Liu, G.-N., Liu, B.-B. Refining the phylogeny and taxonomy of the apple tribe Maleae (Rosaceae): Insights from phylogenomic analyses of 563 plastomes and a taxonomic synopsis of Photinia and its allies in the Old World. PhytoKeys 2024, 242, 161-227.
[121] Razafimandimbison, S. G., Rydin, C. Phylogeny and classification of the coffee family (Rubiaceae, Gentianales): Overview and outlook. Taxon 2024, 73(3), 673-717.
[122] Razafimandimbison, S. G., Rydin, C. Addendum and corrigendum to: Phylogeny and classification of the coffee family (Rubiaceae, Gentianales): Overview and outlook [in Taxon 73(3): 673-717. 2024]. Taxon 2024, 73(6), 1556-1557.
[123] Ezedin, Z. A conspectus of angiosperm supertribes. Harvard Pap. Bot. 2024, 29(1), 63-78.
[124] Appelhans, M. S., Bayly, M. J., Heslewood, M. M., Groppo, M., Verboom, G. A., Forster, P. I., Kallunki, J. A., Duretto, M. F. A new subfamily classification of the Citrus family (Rutaceae) based on six nuclear and plastid markers. Taxon 2021, 70(5), 1035-1061.
[125] Appelhans, M. S., Wen, J. Phylogenetic placement of Ivodea and biogeographic affinities of Malagasy Rutaceae. Pl. Syst. Evol. 2020, 306(1): 7.
[126] Buerki, S., Callmander, M. W., Acevedo‐Rodriguez, P., Lowry, P. P., Munzinger, J., Bailey, P., Maurin, O., Brewer, G. E., Epitawalage, N., Baker, W. J., Forest, F. An updated infra‐familial classification of Sapindaceae based on targeted enrichment data. Amer. J. Bot. 2021, 108(7), 1234-1251.
[127] Swenson, U., Anderberg, A. A. Phylogeny, character evolution, and classification of Sapotaceae (Ericales). Cladistics 2005, 21(2), 101-130.
[128] De Faria, A. D., Pirani, J. R., Ribeiro, J. E. L. D. S., Nylinder, S., Terra-Araujo, M. H., Vieira, P. P., Swenson, U. Towards a natural classification of Sapotaceae subfamily Chrysophylloideae in the Neotropics. Bot. J. Linn. Soc. 2017, 185(1), 27-55.
[129] Pennington, T. D. Genera of the Sapotaceae. Kew publ., UK; 1991, pp. 307.
[130] Swenson, U., Lepschi, B., Lowry, P. P., Terra‐Araujo, M. H., Santos, K., Nylinder, S., Alves‐Araújo, A. Reassessment of generic boundaries in neotropical Chrysophylloideae (Sapotaceae): Eleven reinstated genera and narrowed circumscriptions of Chrysophyllum and Pouteria. Taxon 2023, 72(2), 307-359.
[131] Swenson, U., Richardson, J. E., Bartish, I. V. Multi‐gene phylogeny of the pantropical subfamily Chrysophylloideae (Sapotaceae): Evidence of generic polyphyly and extensive morphological homoplasy. Cladistics 2008, 24(6), 1006-1031.
[132] Yan, M.-H., Li, C.-Y., Fritsch, P. W., Cai, J., Wang, H.-C. Phylogeny of the Styracaceae revisited based on whole plastome sequences, including novel plastome data from Parastyrax. Syst. Bot. 2021, 46(1), 162-174.
[133] Lee, S. Y., Xu, K.-W., Huang, C.-Y., Lee, J.-H., Liao, W.-B., Zhang, Y.-H., Fan, Q. Molecular phylogenetic analyses based on the complete plastid genomes and nuclear sequences reveal Daphne (Thymelaeaceae) to be non-monophyletic as current circumscription. Pl. Diversity 2022, 44(3), 279-289.
[134] Wu, Z.-Y., Monro, A. K., Milne, R. I., Wang, H., Yi, T.-S., Liu, J., Li, D.-Z. Molecular phylogeny of the nettle family (Urticaceae) inferred from multiple loci of three genomes and extensive generic sampling. Molec. Phylogen. Evol. 2013, 69(3), 814-827.
[135] Ogoma, C. A., Liu, J., Stull, G. W., Wambulwa, M. C., Oyebanji, O., Milne, R. I., Monro, A. K., Zhao, Y., Li, D.-Z., Wu, Z.-Y. Deep insights into the plastome evolution and phylogenetic relationships of the tribe Urticeae (family Urticaceae). Frontiers Pl. Sci. (Online Journal) 2022, 13, 870949.
[136] Mello-Silva, R., Santos, D. Y. A. C., Salatino, M. L. F., Motta, L. B., Cattai, M. B., Sasaki, D., Lovo, J., Pita, P. B., Rocini, C., Rodrigues, C. D. N., Zarrei, M., Chase, M. W. Five vicarious genera from Gondwana: The Velloziaceae as shown by molecules and morphology. Ann. Bot. (Oxford) 2011, 108(1), 87-102.
[137] Alcantara, S., Ree, R. H., Mello-Silva, R. Accelerated diversification and functional trait evolution in Velloziaceae reveal new insights into the origins of the campos rupestres’ exceptional floristic richness. Ann. Bot. (Oxford) 2018, 122(1), 165-180.
[138] Boer, H. D., Newman, M., Poulsen, A. D., Droop, A. J., Fér, T., Thu Hiền, L. T., Hlavatá, K., Lamxay, V., Richardson, J. E., Steffen, K., Leong-Škorničková, J. Convergent morphology in Alpinieae (Zingiberaceae): Recircumscribing Amomum as a monophyletic genus. Taxon 2018, 67(1), 6-36.
[139] Tan, S., Hollands, R., Pavlíková, M., Fér, T., Newman, M. F. A. Revision of Gagnepainia and Hemiorchis (Globbeae: Zingiberaceae). Edinburgh J. Bot. 2020, 77(3), 455-490.
[140] Williams, K. J., Kress, W. J., Manos, P. S. The phylogeny, evolution, and classification of the genus Globba and tribe Globbeae (Zingiberaceae): Appendages do matter. Amer. J. Bot. 2004, 91(1), 100-114.
Cite This Article
  • APA Style

    Zhen-Hao, F. (2025). J. L. Reveal’s Revelance Re-revealed: Addenda to Newly Required Infrafamilial Ranks in Selected Families. Plant, 13(3), 138-165. https://doi.org/10.11648/j.plant.20251303.13

    Copy | Download

    ACS Style

    Zhen-Hao, F. J. L. Reveal’s Revelance Re-revealed: Addenda to Newly Required Infrafamilial Ranks in Selected Families. Plant. 2025, 13(3), 138-165. doi: 10.11648/j.plant.20251303.13

    Copy | Download

    AMA Style

    Zhen-Hao F. J. L. Reveal’s Revelance Re-revealed: Addenda to Newly Required Infrafamilial Ranks in Selected Families. Plant. 2025;13(3):138-165. doi: 10.11648/j.plant.20251303.13

    Copy | Download

  • @article{10.11648/j.plant.20251303.13,
      author = {Feng Zhen-Hao},
      title = {J. L. Reveal’s Revelance Re-revealed: Addenda to Newly Required Infrafamilial Ranks in Selected Families
    },
      journal = {Plant},
      volume = {13},
      number = {3},
      pages = {138-165},
      doi = {10.11648/j.plant.20251303.13},
      url = {https://doi.org/10.11648/j.plant.20251303.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.plant.20251303.13},
      abstract = {This paper presents a preliminary set of addenda establishing new infrafamilial taxa at the ranks of subfamilies, supertribe, tribes and subtribes within selected families of flowering plants mainly for wild and cultivated flora in China and East Asia. The work aims to supplement existing classifications mainly in the paradigm of Linnaean hierarchy, enhancing the balance and phylogenetic coherence of the hierarchical structure in these families. Although there are no widely accepted tenets for designating so called appropriate ranks, the principle set by Angiosperm Phylogeny Group II of treating monogeneric/oligogeneric families as synonyms to their sister groups is here followed and applied when erecting or merging infrafamilial ranks. The addenda cover 70 families (e.g., Anacardiaceae, Apocynaceae, Fabaceae, and Rubiaceae), in which 214 new names (i.e., 23 new subfamilies, 1 new supertribe, 76 new tribes and 115 new subtribes) are validated whether based on existing reference or newly designated types, with diagnoses and included subordinate taxa provided. These newly established taxa, while not necessarily mandatory for use, provide essential, phylogenetically informed options for organizing taxa below the family level and improving the hierarchical structure of angiosperm classification in order to facilitate future study of systematics and compilation of data for plant biodiversity.},
     year = {2025}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - J. L. Reveal’s Revelance Re-revealed: Addenda to Newly Required Infrafamilial Ranks in Selected Families
    
    AU  - Feng Zhen-Hao
    Y1  - 2025/08/13
    PY  - 2025
    N1  - https://doi.org/10.11648/j.plant.20251303.13
    DO  - 10.11648/j.plant.20251303.13
    T2  - Plant
    JF  - Plant
    JO  - Plant
    SP  - 138
    EP  - 165
    PB  - Science Publishing Group
    SN  - 2331-0677
    UR  - https://doi.org/10.11648/j.plant.20251303.13
    AB  - This paper presents a preliminary set of addenda establishing new infrafamilial taxa at the ranks of subfamilies, supertribe, tribes and subtribes within selected families of flowering plants mainly for wild and cultivated flora in China and East Asia. The work aims to supplement existing classifications mainly in the paradigm of Linnaean hierarchy, enhancing the balance and phylogenetic coherence of the hierarchical structure in these families. Although there are no widely accepted tenets for designating so called appropriate ranks, the principle set by Angiosperm Phylogeny Group II of treating monogeneric/oligogeneric families as synonyms to their sister groups is here followed and applied when erecting or merging infrafamilial ranks. The addenda cover 70 families (e.g., Anacardiaceae, Apocynaceae, Fabaceae, and Rubiaceae), in which 214 new names (i.e., 23 new subfamilies, 1 new supertribe, 76 new tribes and 115 new subtribes) are validated whether based on existing reference or newly designated types, with diagnoses and included subordinate taxa provided. These newly established taxa, while not necessarily mandatory for use, provide essential, phylogenetically informed options for organizing taxa below the family level and improving the hierarchical structure of angiosperm classification in order to facilitate future study of systematics and compilation of data for plant biodiversity.
    VL  - 13
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Sections