This paper introduces an optimized method for reducing operational costs by integrating a microgrid consisting of photovoltaic (PV) panels and battery energy storage systems (BESS), thereby decreasing dependence on the main grid. Traditionally, electricity demands have been met primarily by the main grid. However, with the increased use of renewable energy sources and BESS in microgrids, it's now possible to lower generation costs, improve environmental sustainability, and enhance energy efficiency. In this study, the optimization problem is tackled using the SPEA2 algorithm, focusing on three main objectives: (i) minimizing technical issues like power losses and voltage fluctuations in the grid, (ii) maximizing financial returns for distribution network operators, and (iii) reducing grid imports. The paper provides a comprehensive set of numerical results, leveraging detailed data on energy demand, local solar irradiance, and energy storage systems to validate the proposed method. The obtained results, based on two case studies, confirm that the optimal energy combination between power units and the main grid at each time can reduce power losses, voltage deviation and improve financial returns. The results highlight also the added value of BESS integration in minimizing grid imports, especially during peak hours. It can be said that the results underscore the remarkable efficiency and effectiveness of the proposed approach, demonstrating its capability to address the targeted challenges while achieving optimal performance metrics.
Published in | Journal of Electrical and Electronic Engineering (Volume 13, Issue 1) |
DOI | 10.11648/j.jeee.20251301.11 |
Page(s) | 1-14 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
PV System, Battery Energy Storage System, Optimization, Microgrid, Energy Management
Bus | Unit | Power (kW) |
---|---|---|
24 | PV1 | 1535 |
3 | PV2 | 1588 |
12 | PV3 | 1445 |
BESS1 | 2546 | |
30 | PV4 | 1390 |
5 | BESS2 | 4538 |
Type of load | Industrial | Commercial | Residential |
---|---|---|---|
Energy cost | 0.1 USD/kWh | 0.1038 USD/kWh | 0.0886 USD/kWh |
PV | BESS charging from PV | BESS Discharging | |
---|---|---|---|
Energy cost (USD/kWh) | 0.047 | 0.048 | 0.065 |
The used parameters | The proposed value |
---|---|
Technical parameters | |
Self-discharge for Li-ion (%/day) | 0.1 |
Charging efficiency (%) | 95 |
Discharging efficiency (%) | 95 |
Simulation parameters | |
Maximum iterations | 80 |
Number of populations | 50 |
pmutation | 0.1 |
pcrossover | 0.9 |
t | Reference | PV without BESS | PV with BESS | ||||||
---|---|---|---|---|---|---|---|---|---|
PL (kW) | VDaverage (p.u.) | Profit (USD) | PL (kW) | VDaverage (p.u.) | Profit (USD) | PL (kW) | VDaverage (p.u.) | Profit (USD) | |
1 | 3,99 | 0,00728 | 39,1013 | 3,99 | 0,00728 | 39,1013 | 3,99 | 0,00728 | 39,1013 |
2 | 3,99 | 0,00728 | 39,1013 | 3,99 | 0,00728 | 39,1013 | 3,99 | 0,00728 | 39,1013 |
3 | 3,81 | 0,00708 | 37,9124 | 3,81 | 0,00708 | 37,9124 | 3,81 | 0,00708 | 37,9124 |
4 | 1,639 | 0,0046 | 24,9166 | 1,639 | 0,0046 | 24,9166 | 1,639 | 0,0046 | 24,9166 |
5 | 10,118 | 0,0113 | 60,679 | 10,118 | 0,0113 | 60,679 | 10,118 | 0,0113 | 60,679 |
6 | 8,26 | 0,0103 | 55,2561 | 8,262 | 0,0103 | 55,2561 | 8,262 | 0,0103 | 55,2561 |
7 | 15,278 | 0,014 | 74,8637 | 15,278 | 0,014 | 74,8637 | 15,278 | 0,014 | 74,8637 |
8 | 21,57 | 0,0167 | 89,0484 | 20,118 | 0,0161 | 89,2501 | 20,118 | 0,0161 | 89,25 |
9 | 54,85 | 0,027 | 91,1307 | 31,329 | 0,0197 | 113,4491 | 31,329 | 0,0197 | 113,449 |
10 | 72,738 | 0,0311 | 104,5083 | 27,369 | 0,0157 | 152,0663 | 27,369 | 0,0157 | 152,066 |
11 | 90,61 | 0,0346 | 115,667 | 31,486 | 0,0127 | 183,6416 | 31,486 | 0,0127 | 183,641 |
12 | 95,558 | 0,0354 | 118,5635 | 35,984 | 0,0081 | 214,0848 | 35,143 | 0,0124 | 192,083 |
13 | 74,206 | 0,031 | 104,3484 | 40,77 | 0,00056 | 227,8526 | 33,377 | 0,0118 | 170,135 |
14 | 75,86 | 0,0315 | 105,7298 | 42,76 | 0,000207 | 235,6455 | 34,242 | 0,01208 | 172,611 |
15 | 83,95 | 0,0332 | 111,3891 | 51,76 | 0,00208 | 259,8491 | 39,499 | 0,01306 | 182,0408 |
16 | 114,41 | 0,0388 | 8,421 | 50,75 | 0,00382 | 303,8578 | 45,109 | 0,0141 | 210,025 |
17 | 121,56 | 0,0399 | 8,5308 | 47,86 | 0,0074 | 275,1484 | 45,0537 | 0,012 | 232,87 |
18 | 117,839 | 0,0392 | 9,1717 | 43,609 | 0,0108 | 234,1464 | 43,609 | 0,0108 | 234,14 |
19 | 122,103 | 0,0399 | 10,3609 | 45,92 | 0,0170 | 185,6493 | 44,858 | 0,01298 | 206,801 |
20 | 157,37 | 0,0453 | 11,5759 | 78,227 | 0,029 | 131,1317 | 62,572 | 0,0134 | 213,003 |
21 | 155,719 | 0,0451 | 12,1156 | 110,39 | 0,0373 | 69,3029 | 71,819 | 0,0125 | 196,164 |
22 | 53,86 | 0,0265 | 90,1766 | 51,48 | 0,0259 | 92,0598 | 28,7169 | 0,0156 | 102,196 |
23 | 27,409 | 0,0188 | 99,7803 | 27,409 | 0,0188 | 99,7803 | 27,409 | 0,0188 | 99,7803 |
24 | 8,79 | 0,0107 | 57,52 | 8,7919 | 0,01076 | 57,52 | 8,7919 | 0,01076 | 57,52 |
Average | Sum | Average | Sum | Average | Sum | ||||
62,3139 | 0,0253 | 1479,86 | 33,0481 | 0,01244 | 3256,26 | 28,23 | 0,0123 | 3139,62 |
Reference | PV without BESS | PV with BESS | |||||||
---|---|---|---|---|---|---|---|---|---|
t | PL (kW) | VDaverage (p.u.) | Profit (USD) | PL (kW) | VDaverage (p.u.) | Profit (USD) | PL (kW) | VDaverage (p.u.) | Profit (USD) |
1 | 3,99 | 0,00728 | 39,1013 | 3,99 | 0,00728 | 39,1013 | 3,99 | 0,00728 | 39,1013 |
2 | 3,99 | 0,00728 | 39,1013 | 3,99 | 0,00728 | 39,1013 | 22,63 | 0,0161 | 39,1013 |
3 | 3,81 | 0,00708 | 37,9124 | 3,81 | 0,00708 | 37,9124 | 22,21 | 0,0159 | 37,9124 |
4 | 1,639 | 0,00462 | 24,9166 | 1,639 | 0,00462 | 24,9166 | 16,84 | 0,0134 | 24,9166 |
5 | 10,118 | 0,0113 | 60,679 | 10,118 | 0,01134 | 60,679 | 33,44 | 0,0203 | 60,679 |
6 | 8,26 | 0,01032 | 55,2561 | 8,26 | 0,01032 | 55,2561 | 30,47 | 0,01929 | 55,2561 |
7 | 15,278 | 0,01404 | 74,8637 | 15,278 | 0,01404 | 74,8637 | 42,214 | 0,02309 | 74,8637 |
8 | 21,57 | 0,01676 | 89,0484 | 21,57 | 0,01676 | 89,0484 | 40,78 | 0,023 | 89,0484 |
9 | 54,85 | 0,02701 | 91,1307 | 54,85 | 0,02701 | 91,1307 | 54,85 | 0,027 | 91,1307 |
10 | 72,738 | 0,0311 | 104,5083 | 68,54 | 0,0302 | 107,258 | 68,54 | 0,03 | 107,258 |
11 | 90,61 | 0,0346 | 115,667 | 54,979 | 0,0262 | 141,038698 | 54,979 | 0,026 | 141,038 |
12 | 95,558 | 0,0354 | 118,5635 | 40,66 | 0,02 | 165,72479 | 40,66 | 0,02 | 165,72 |
13 | 74,206 | 0,031 | 104,3484 | 27,66 | 0,01049 | 168,646175 | 27,66 | 0,01049 | 168,64 |
14 | 75,86 | 0,0315 | 105,7298 | 29,287 | 0,0071 | 191,115689 | 29,28 | 0,00717 | 191,115 |
15 | 83,95 | 0,0332 | 111,3891 | 31,35 | 0,00747 | 201,986325 | 31,35 | 0,00747 | 201,986 |
16 | 114,41 | 0,0388 | 8,421 | 39,75 | 0,0132042 | 206,074163 | 39,75 | 0,0132 | 206,074 |
17 | 121,56 | 0,03992 | 8,5308 | 44,2 | 0,0171 | 182,562506 | 44,2 | 0,01719 | 182,562 |
18 | 117,839 | 0,03923 | 9,1717 | 49,248 | 0,02128 | 145,775787 | 49,248 | 0,02128 | 145,77 |
19 | 122,103 | 0,0399 | 10,3609 | 66,81 | 0,027 | 101,501357 | 50,908 | 0,01163 | 185,16 |
20 | 157,37 | 0,04532 | 11,5759 | 131,75 | 0,0412 | 41,3623201 | 78,98 | 0,01212 | 189,92 |
21 | 155,719 | 0,0451 | 12,1156 | 155,719 | 0,0451 | 12,1156 | 105,48 | 0,0347 | 62,367 |
22 | 53,86 | 0,0265 | 90,1766 | 53,86 | 0,0265 | 90,1766 | 53,86 | 0,0265 | 90,1766 |
23 | 27,409 | 0,0188 | 99,7803 | 27,409 | 0,0188 | 99,7803 | 27,409 | 0,0188 | 99,7803 |
24 | 8,791 | 0,0107 | 57,52 | 8,79 | 0,0107 | 57,52 | 8,79 | 0,0107 | 57,52 |
Average | Sum | Average | Sum | Average | Sum | ||||
62,31 | 0,025 | 1479,86 | 39,73 | 0,0179 | 2424,64 | 40,7 | 0,018 | 2707,09 |
DNO | Distribution Network Operator |
SPEA2 | Strength Pareto Evolutionary Algorithm 2 |
BESS | Battery Energy Storage Systems |
DERs | Distributed Energy Resources |
MG | Microgrid |
PV | Photovoltaic |
[1] | X. Li, Z. Li, Micro-grid resource allocation based on multi-objective optimization in cloud platform, Proceedings of 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), (2017), pp. 509–512, |
[2] | G. Liu, T. B. Ollis, B. Xiao, X. Zhang, K. Tomsovic, Distributed energy management for community microgrids considering phase balancing and peak shaving, IET Gener. Transm. Distrib. 13 (9) (2019) 1612–1620, |
[3] | E. Loukakis, E. Karapidakis, Feasibility study of microgrid village with renewable energy sources, Proceedings of 2017 52nd International Universities Power Engineering Conference (UPEC), (2017), pp. 1–6, |
[4] | N. T. Mbungu, R. M. Naidoo, R. C. Bansal, V. Vahidinasab, Overview of the optimal smart energy coordination for microgrid applications, IEEE Access 7 (2019) 163063–163084, |
[5] | M. Laour, F. Akel, D. Bendib, M. Chikh, Residential microgrid load management and optimal control in grid connected and islanded mode, Proceedings of 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), (2018), pp. 1–4, |
[6] | A. Saif, V. R. Pandi, H. Zeineldin, S. Kennedy, Optimal allocation of distributed energy resources through simulation-based optimization, Electr. Power Syst. Res. 104 (2013) 1–8, |
[7] | H. Saboori, R. Hemmati, considering carbon capture and storage in electricity generation expansion planning, IEEE Trans. Sustain. Energy 7 (4) (2016) 1371–1378. |
[8] | G. Office, The Texas Renewable Energy Industry, 2014. |
[9] | P. Lazzeroni, S. Olivero, F. Stirano, M. Repetto, Impact of pv penetration in a distribution grid: a middle-east study case, Proceedings of 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), (2015), pp. 353–358, |
[10] | C. Huang, Y. Huang, K. Huang, Capacity optimization of a stand-alone microgrid system using charged system search algorithm, Proceedings of 2018 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), (2018), pp. 345–350, |
[11] | P. B. Borase, S. M. Akolkar, Energy management system for microgrid with power quality improvement, Proceedings of 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS), (2017), pp. 1–6, |
[12] | P. Arul, V. K. Ramachandaramurthy, Mitigating techniques for the operational challenges of a standalone hybrid system integrating renewable energy sources, Sustain. Energy Technol. Assess. 22 (2017) 18–24, |
[13] | S. Acha, A. Mariaud, N. Shah, C. N. Markides, Optimal design and operation of distributed low-carbon energy technologies in commercial buildings, Energy 142 (2018) 578–591, |
[14] |
E. Ntakou, R. Masiello, F. Farzan, S. Bahramirad, A. Paaso, M. Nayeem, M. Maigha, D. Kushner, Full ac analysis of value of der to the grid and optimal der scheduling, Electr. J. 32 (4) (2019) 45–49,
https://doi.org/10.1016/j.tej.2019.03.007 Special Issue on Strategies for a sustainable, reliable and resilient grid. |
[15] | V. R. Pandi, H. H. Zeineldin, W. Xiao, Determining optimal location and size of distributed generation resources considering harmonic and protection coordination limits, IEEE Trans. Power Syst. 28 (2) (2013) 1245–1254, |
[16] | C. K. Das, O. Bass, T. S. Mahmoud, G. Kothapalli, M. A. Masoum, N. Mousavi, An optimal allocation and sizing strategy of distributed energy storage systems to improve performance of distribution networks, J. Energy Storage 26 (2019) 100847, |
[17] | A. S. A. Awad, T. H. M. EL-Fouly, M. M. A. Salama, Optimal ess allocation for benefit maximization in distribution networks, IEEE Trans. Smart Grid 8 (4) (2017) 1668–1678, |
[18] | A. S. Hassan, L. Cipcigan, N. Jenkins, Optimal battery storage operation for pv systems with tariff incentives, Appl. Energy 203 (2017) 422–441, |
[19] | X. Liu, Z. Yan, J. Wu, Optimal coordinated operation of a multi-energy community considering interactions between energy storage and conversion devices, Appl. Energy 248 (2019) 256–273, |
[20] | Y. Yang, S. Zhang, Y. Xiao, Optimal design of distributed energy resource systems coupled with energy distribution networks, Energy 85 (2015) 433–448, |
[21] | L. He, Z. Lu, J. Zhang, L. Geng, H. Zhao, X. Li, Low-carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power to gas, Appl. Energy 224 (2018) 357–370, |
[22] | R. J. Flores, J. Brouwer, Optimal design of a distributed energy resource system that economically reduces carbon emissions, Appl. Energy 232 (2018) 119–138, |
[23] | H. Gu, Y. Li, J. Yu, C. Wu, T. Song, J. Xu, Bi-level optimal low-carbon economic dispatch for an industrial park with consideration of multi-energy price incentives, Appl. Energy 262 (2020) 114276, |
[24] | R. Garmabdari, M. Moghimi, F. Yang, E. Gray, J. Lu, Battery energy storage capacity optimisation for grid-connected microgrids with distributed generators, Proceedings of 2017 Australasian Universities Power Engineering Conference (AUPEC), (2017), pp. 1–6, |
[25] | I. Kim, Optimal capacity of storage systems and photovoltaic systems able to control reactive power using the sensitivity analysis method, Energy 150 (2018) 642–652, |
[26] | A. L. Bukar, C. W. Tan, K. Y. Lau, Optimal sizing of an autonomous photovoltaic/ wind/battery/diesel generator microgrid using grasshopper optimization algorithm, Sol. Energy 188 (2019) 685–696, |
[27] | H. HassanzadehFard, A. Jalilian, A novel objective function for optimal dg allocation in distribution systems using meta-heuristic algorithms, Int. J. Green Energy 13 (15) (2016) 1615–1625, |
[28] | H. Hassanzadehfard, A. Jalilian, Optimal sizing and siting of renewable energy resources in distribution systems considering time varying electrical/heating/ cooling loads using pso algorithm, Int. J. Green Energy 15 (2) (2018) 113–128, |
[29] | B. Kroposki, P. K. Sen, K. Malmedal, Optimum sizing and placement of distributed and renewable energy sources in electric power distribution systems, IEEE Trans. Ind. Appl. 49 (6) (2013) 2741–2752, |
[30] | A. S. Hassan, L. Cipcigan, N. Jenkins, Impact of optimised distributed energy resources on local grid constraints, Energy 142 (2018) 878–895, |
[31] | L. I. Dulǎu, M. Abrudean, D. Bicǎ, Optimal location of a distributed generator for power losses improvement, Procedia Technol. 22 (2016) 734–739, 9th International Conference Interdisciplinarity in Engineering, INTER-ENG 2015, 8–9 October 2015, Tirgu Mures, Romania. |
[32] | A. A. Hamad, M. E. Nassar, E. F. El-Saadany, M. M. A. Salama, Optimal configuration of isolated hybrid ac/dc microgrids, IEEE Trans. Smart Grid 10 (3) (2019) 2789–2798, |
[33] | Y. M. Alsmadi, A. M. Abdel-hamed, A. E. Ellissy, A. S. El-Wakeel, A. Y. Abdelaziz, V. Utkin, A. A. Uppal, Optimal configuration and energy management scheme of an isolated micro-grid using cuckoo search optimization algorithm, J. Frankl. Inst. 356 (8) (2019) 4191–4214, |
[34] | F. Tooryan, E. R. Collins, Optimum size and placement of distributed generators in microgrid based on reliability concept, Proceedings of 2018 IEEE Power and Energy Conference at Illinois (PECI), (2018), pp. 1–6, |
[35] | S. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimisation algorithm: theory and application, Adv. Eng. Softw. 105 (2017) 30–47, |
[36] | M. W. Khan, J. Wang, M. Ma, L. Xiong, P. Li, F. Wu, Optimal energy management and control aspects of distributed microgrid using multi-agent systems, Sustain. Cities Soc. 44 (2019) 855–870, |
[37] | F. Tooryan, S. M. Tafreshi, S. Bathaee, H. Hamidhassanzadeh-Fard, Distributed energy resources optimal sizing and placement in a microgrid, Int. Electr. Eng. J. 4 (2013) 1059–1070. |
[38] | Bertsch V, Geldermann J, Lühn T. What drives the profitability of household PV investments, self-consumption and self-sufficiency?; 2017. |
[39] | Weniger J, Tjaden T, Quaschning V. Sizing of residential PV battery systems. Energy Procedia 2014; 46: 78–87. |
[40] | Brusco G, Burgio A, Menniti D, Pinnarelli A, Sorrentino N. The economic viability of a feed-in tariff scheme that solely rewards self-consumption to promote the use of integrated photovoltaic battery systems. Appl Energy 2016; 183: 1075–85. |
[41] | Castillo-Cagigal M, Caamaño-Martín E, Matallanas E, Masa-Bote D, Gutiérrez A, Monasterio-Huelin F, et al. PV self-consumption optimization with storage and Active DSM for the residential sector. Sol Energy 2011; 85: 2338–48. |
[42] | Linssen J, Stenzel P, Fleer J. Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles. Appl Energy 2017; 185: 2019–25. |
[43] | Ratnam EL, Weller SR, Kellett CM. Scheduling residential battery storage with solar PV: Assessing the benefits of net metering. Appl Energy 2015; 155: 881–91. |
[44] | Kanteh Sakiliba S, Sani Hassan A, Wu J, Saja Sanneh E, Ademi S. Assessment of stand-alone residential solar photovoltaic application in sub-Saharan Africa: A CASE STUDY of Gambia. J Renew Energy 2015; 2015: 1–10. |
[45] | Spiers D. Batteries in PV Systems. Practical Handbook Photovolt 2012: 721–76. |
[46] | Barros J, Leite H. Feed-in tariffs for wind energy in Portugal: Current status and prospective future. In: Electrical power quality and utilisation (EPQU), 2011 11th International Conference on, IEEE; 2011, p. 1–5. |
[47] | Berrada A, Loudiyi K. Operation, sizing, and economic evaluation of storage for solar and wind power plants. Renew Sustain Energy Rev 2016; 59: 1117–29. |
[48] | Corcuera S, Estornés J, Menictas C. Advances in batteries for medium and large-scale energy storage. Elsevier; 2015 |
[49] | Vassallo AM. Advances in Batteries for medium and large-scale energy storage. Elsevier; 2015. |
[50] | Pyrgou A, Kylili A, Fokaides PA. The future of the Feed-in Tariff (FiT) scheme in Europe: The case of photovoltaics. Energy Policy 2016; 95. |
[51] | Li R, Wang Z, Gu C, Li F, Wu H. A novel time-of-use tariff design based on Gaussian Mixture Model. Appl Energy 2016; 162: 1530–6. |
[52] | Ruth M, Pratt A, Lunacek M, Mittal S, Wu H, Jones W. Effects of home energy management systems on distribution utilities and feeders under various market structures 2015; 15(18). |
[53] | Ayón X, Gruber JK, Hayes BP, Usaola J, Prodanovic´ M. An optimal day-ahead load scheduling approach based on the flexibility of aggregate demands. Appl Energy 2017; 198: 1–11. |
[54] | Hanna R, Kleissl J, Nottrott A, Ferry M. Energy dispatch schedule optimization for demand charge reduction using a photovoltaic-battery storage system with solar forecasting. Sol Energy 2014; 103. |
[55] | Stadler M, Groissböck M, Cardoso G, Marnay C. Optimizing Distributed Energy Resources and building retrofits with the strategic DER-CAModel. Appl Energy 2014; 132: 557–67. |
[56] | Beck T, Kondziella H, Huard G, Bruckner T. Optimal operation, configuration and sizing of generation and storage technologies for residential heat pump systems in the spotlight of self-consumption of photovoltaic electricity. Appl Energy 2017; 188: 604–19. |
[57] | Olaszi BD, Ladanyi J. Comparison of different discharge strategies of grid connected residential PV systems with energy storage in perspective of optimal battery energy storage system sizing. Renew Sustain Energy Rev 2017; 75: 710–8. |
[58] | Carlos A. Coello Coello, David A. Van Veldihuizen, and Gary B. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems, Kluwer Academic Publishers, New York 2002. |
APA Style
Aksbi, A., Kafazi, I. E., Bannari, R. (2025). Optimum Energy Management of Distribution Networks with Integrated Decentralized PV-BES Systems. Journal of Electrical and Electronic Engineering, 13(1), 1-14. https://doi.org/10.11648/j.jeee.20251301.11
ACS Style
Aksbi, A.; Kafazi, I. E.; Bannari, R. Optimum Energy Management of Distribution Networks with Integrated Decentralized PV-BES Systems. J. Electr. Electron. Eng. 2025, 13(1), 1-14. doi: 10.11648/j.jeee.20251301.11
@article{10.11648/j.jeee.20251301.11, author = {Anas Aksbi and Ismail El Kafazi and Rachid Bannari}, title = {Optimum Energy Management of Distribution Networks with Integrated Decentralized PV-BES Systems }, journal = {Journal of Electrical and Electronic Engineering}, volume = {13}, number = {1}, pages = {1-14}, doi = {10.11648/j.jeee.20251301.11}, url = {https://doi.org/10.11648/j.jeee.20251301.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.jeee.20251301.11}, abstract = {This paper introduces an optimized method for reducing operational costs by integrating a microgrid consisting of photovoltaic (PV) panels and battery energy storage systems (BESS), thereby decreasing dependence on the main grid. Traditionally, electricity demands have been met primarily by the main grid. However, with the increased use of renewable energy sources and BESS in microgrids, it's now possible to lower generation costs, improve environmental sustainability, and enhance energy efficiency. In this study, the optimization problem is tackled using the SPEA2 algorithm, focusing on three main objectives: (i) minimizing technical issues like power losses and voltage fluctuations in the grid, (ii) maximizing financial returns for distribution network operators, and (iii) reducing grid imports. The paper provides a comprehensive set of numerical results, leveraging detailed data on energy demand, local solar irradiance, and energy storage systems to validate the proposed method. The obtained results, based on two case studies, confirm that the optimal energy combination between power units and the main grid at each time can reduce power losses, voltage deviation and improve financial returns. The results highlight also the added value of BESS integration in minimizing grid imports, especially during peak hours. It can be said that the results underscore the remarkable efficiency and effectiveness of the proposed approach, demonstrating its capability to address the targeted challenges while achieving optimal performance metrics. }, year = {2025} }
TY - JOUR T1 - Optimum Energy Management of Distribution Networks with Integrated Decentralized PV-BES Systems AU - Anas Aksbi AU - Ismail El Kafazi AU - Rachid Bannari Y1 - 2025/01/09 PY - 2025 N1 - https://doi.org/10.11648/j.jeee.20251301.11 DO - 10.11648/j.jeee.20251301.11 T2 - Journal of Electrical and Electronic Engineering JF - Journal of Electrical and Electronic Engineering JO - Journal of Electrical and Electronic Engineering SP - 1 EP - 14 PB - Science Publishing Group SN - 2329-1605 UR - https://doi.org/10.11648/j.jeee.20251301.11 AB - This paper introduces an optimized method for reducing operational costs by integrating a microgrid consisting of photovoltaic (PV) panels and battery energy storage systems (BESS), thereby decreasing dependence on the main grid. Traditionally, electricity demands have been met primarily by the main grid. However, with the increased use of renewable energy sources and BESS in microgrids, it's now possible to lower generation costs, improve environmental sustainability, and enhance energy efficiency. In this study, the optimization problem is tackled using the SPEA2 algorithm, focusing on three main objectives: (i) minimizing technical issues like power losses and voltage fluctuations in the grid, (ii) maximizing financial returns for distribution network operators, and (iii) reducing grid imports. The paper provides a comprehensive set of numerical results, leveraging detailed data on energy demand, local solar irradiance, and energy storage systems to validate the proposed method. The obtained results, based on two case studies, confirm that the optimal energy combination between power units and the main grid at each time can reduce power losses, voltage deviation and improve financial returns. The results highlight also the added value of BESS integration in minimizing grid imports, especially during peak hours. It can be said that the results underscore the remarkable efficiency and effectiveness of the proposed approach, demonstrating its capability to address the targeted challenges while achieving optimal performance metrics. VL - 13 IS - 1 ER -