The emergence of new infectious agents is a potential risk associated with genetic manipulation and field cultivation of genetically modified organisms and constitutes a new challenge in molecular epidemiology. The main objective of the current study was to synthesize silver nanoparticles and evaluate the antibacterial activity of these nanoparticles. E. coli and Enterococcus sp. were isolated from wastewater samples collected from Kalamu River. The preliminary characterization of silver nanoparticles was carried out using UV-visible spectrophotometer. Noble metals, such as silver nanoparticles, exhibit unique and adjustable optical properties due to their external plasmon resonance. The reduction of silver ions was monitored by measuring the UV-visible spectrum of the solutions after dilution of a small aliquot (0.2 mL) of the aqueous component. The antibiotic susceptibility test results confirmed the inactivity of these antibiotics tested against the wild strain of Enterococcus sp. The synthesized silver nanoparticles displayed a good antibacterial activity against Enterococcus sp. The synthesis of silver nanoparticles is designed precisely to alleviate this situation; and these results provide a strong evidence that silver nanoparticles can be used to fight antibiotic-resistant bacteria.
Published in | Frontiers in Environmental Microbiology (Volume 4, Issue 1) |
DOI | 10.11648/j.fem.20180401.15 |
Page(s) | 29-40 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Silver Nanoparticles, Antibacterial Activity, Antibiotic-Resistant Bacteria, Kalamu River, Annona senegalensis
[1] | Aurelie F. Diversité bactérienne des sols: accès aux populations a effectifs minoritaires: the rare biosphere ". Sciences du Vivant [q-bio]. Ecole Centrale de Lyon, 2010. |
[2] | Schwartz T., Kohnen W., Bernd J., Obst U. Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiology Ecology, 2003, 43:325-335 |
[3] | Fortin N., Beaumier D., Lee K. and Greer C. W. Soil washing improves the recovery of total community DNA from polluted and high organic content sediments. Journal of Microbiology Methods, 2004, 56:181-191. |
[4] | Lawrence J. G. Gene transfer, speciation, and the evolution of bacterial genomes. Current Opinion in Microbiology, 1999, 2: 519-523. |
[5] | Salomoni R., Leo P. and Rodrigues M. F. A. Antibacterial Activity of Silver Nanoparticles (AgNPs) in Staphylococcus aureus and Cytotoxicity Effect in Mammalian Cells. The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs, 2015, 851-857. |
[6] | Moghimi, S. M., Hunter, A. C., and Murray, J. C. Nanomedicine: current status and future prospects. FASEB Journal, 2005, 19(3):311–330. |
[7] | Gao, X. H., Cui, Y. Y., Levenson, R. M., Chung, L. W. K., and Nie, S. M. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004, 2(8):969-76. |
[8] | Bertorelle, F., Wilhelm, C., Roger, J., Gazeau, F., Menager, C., and Cabuil, V. Fluorescence-modified superparamagnetic nanoparticles: Intracellular uptake and use in cellular imaging. Langmuir, 2006, 22(12):5385–5391. |
[9] | Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., Lai, D., Olin, S., Monteiro-Riviere, N., Warheit, D., and Yang, H. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Particle and Fibre Toxicology, 2005, 2(8):1–35. |
[10] | Ophélie Z. Etudes des interactions physicochimiques et biologiques entre des nanoparticules manufacturées et des bactéries de l’environnement. Thèse de doctorat de l’université Paris VI - Pierre et Marie Curie, 2008, 141 p. |
[11] | Luboya K. M. Rivière à Kinshasa: poubelles publiques et égouts à ciel ouvert. Une étude de la pollution des cours d’eau superficiels à Kinshasa. Méd. Fac. Landbouw. Gent, 1999, 64/1. |
[12] | Ngbolua K. N., Bishola T. T, Mpiana P. T., Mudogo V., Tshibangu D. S. T., Ngombe N. K., Ekutsu G. E., Tshilanda D. D., Gbolo B. Z., Mwanangombo D. T., Ruphin F. P., Robijaona B. Ethno-botanical survey, in vitro antisickling and free radical scavenging activities of Garcinia punctata Oliv. (Clusiaceae). Journal of Advanced Botany and Zoology, 2014, 1(2):1-8. |
[13] | Mbadiko M. C., Ngbolua K. N., Mpiana P. T., Mutambel’ H., Kikakedimau N. R., Makengo K. G., Pambu L. A., Kemfine L. L., Bongo G. N., Mbemba T. F. Phytochemical screening and assessment of anti-sickling activity of total methanolic extracts of different organs of Curcuma longa L. (Zingiberaceae). The Pharmaceutical and Chemical Journal, 2017, 4(1):32-40. |
[14] | Gbolo B. Z., Asamboa L. S., Bongo G. N., Tshibangu D. S. T., Kasali F. M., Memvanga P. B., Ngbolua K. N. and Mpiana P. T. Bioactivity and Chemical Analysis of Drepanoalpha: An Anti-Sickle Cell Anemia Poly-Herbal Formula from Congo-Kinshasa. American Journal of Phytomedicine and Clinical Therapeutics, 2017, 5(1):1-7. |
[15] | Bongo G. N., Ngbolua K. N., Ashande C. M., Karume K. L., Mukiza J., Tshilanda D. D., Tshibangu D. S. T., Ngombe N. K., Mbemba T. F. & Mpiana P. T. Pharmacological screening of Gymnanthemum coloratum (Willd.) H. Rob. & B. Kahn (Compositae) and Terminalia ivorensis A. Chev. (Combretaceae) from DR Congo: Spotlight on the antisickling, antibacterial and anti-diabetic activities. Tropical Plant Research, 2017, 4(3): 441–448. |
[16] | Ngbolua K. N., Fatiany P. R., Robijaona B., Randrianirina A. Y. O., Rajaonarivelo P. J., Rasondratovo B., Raharisololalao A., Moulis C., Virima M. and Mpiana P. T. Ethnobotanical survey, Chemical composition and in vitro antimicrobial activity of essential oil from the root bark of Hazomalania voyronii (Jum.) Capuron (Hermandiaceae). Journal of Advancement In Medical and Life Sciences, 2014, 1(1):1-6. |
[17] | Moroh J. L., Bahi C., Dje K., Loukou Y. G., Guide Guina F. Etude de l‘activité antibactérienne de l‘extrait acétatique de Morinda morindoïdes (Baker) Milne-Redheat (Rubiaceae) sur la croissance in vitro des souches d‘Escherichia coli. Bulletin de la Société Royale des Sciences de Liège, 2008, 77:44-61. |
[18] | Ngbolua K. N., Pambu L. A., Mbutuku L. S., Nzapo K. H., Bongo N. G., Bipendu M. N., Falanga M. C., Gbolo Z. B. and Mpiana P. T. Comparative study of the flocculating activity of Moringa oleifera and Vetivera zizanoides in the clarification of pond water from “Plateau de Batéké”, Democratic Republic of the Congo. International Journal of Innovation and Scientific Research, 2016, 24(2):379-387. |
[19] | Moss B. Water pollution by agriculture. Philosophical Transactions of The Royal Society B: Biological Sciences, 2008, 363(1491):659-666. doi: 10.1098/rstb.2007.2176 |
[20] | Tiwari S. Water Quality Parameters – A Review. International Journal of Engineering Science Invention Research & Development, 2015, 1(9):319-324. |
[21] | Musibono D. E. Variations saisonnières en Chrome hexavalent (Cr VI), Cuivre (Cu), Plomb (Pb) et Zinc (Zn) dissous dans quatre rivières urbaines de Kinshasa (RDC) et Analyse d’impacts écologiques ». Méd. Fac. Landbouww. Univ. Gent, 1999, 64/1. |
[22] | Environment Protection Agency. Parameters of Water Quality: Interpretation and Standards. Johnstown Castle, Co. Wexford, Ireland, 2001, 133pp. |
[23] | Kilunga P. I., Kayembe M. J., Laffite A., Thevenon F., Devarajan N., Mulaji K. C., Mubedi I. J., Yav G. Z., Otamonga J. P., Mpiana P. T. & Poté J. The impact of hospital and urban wastewaters on the bacteriological contamination of the water resources in Kinshasa, Democratic Republic of Congo. Journal of Environmental Science and Health, Part A, 2016, DOI:10.1080/10934529.2016.1198619 |
[24] | Okoli, C. O., Onyeto, C. A., Akpa, B. P., Ezike, A. C., Akah, P. A. and Okoye, T. C. Neuropharmacological evaluation of Annona senegalensis leaves. African Journal of Biotechnology, 2010, 9(49): 8435-8444. |
[25] | Ngbolua K. N., Moke E. L., Baya J. L., Djoza R., Ashande C. M. & Mpiana P. T. A mini-review on the pharmacognosy and phytochemistry of a tropical medicinal plant: Annona senegalensis Pers. (Annonaceae). Tropical Plant Research, 2017, 4(1): 168–175. |
[26] | Bruneton J. Pharmacognosie, Phytochimie et Plantes médicinales. Edition Technique et Documentation- Lavoisier, 3e édition, Paris, 1999, pp. 421–499. |
[27] | Okafor F., Janen A., Kukhtareva T., Edwards V., Curley M. Green Synthesis of Silver Nanoparticles, Their Characterization, Application and Antibacterial Activity. International Journal of Environmental Research and Public Health, 2013, 10:5221-5238; doi:10.3390/ijerph10105221 |
[28] | Manikant T., Kumar A., Kumar S. Characterization of Silver Nanoparticles Synthesizing Bacteria and Its Possible Use in Treatment of Multi Drug Resistant Isolate. Frontiers in Environmental Microbiology, 2017; 3(4): 62-67. |
[29] | Bryskier A. Fluoroquinolones (II): Usage en thérapeutique et tolérance. Encycl Méd Chir, Maladies infectieuses, 1999, 8-004-B- pp. 11-14. |
[30] | François J., Chomarat M., Weber M., Gerard A. De l’antibiogramme à la prescription. Biomerieux, 2éme édition, 2003, pp. 8-22. |
[31] | Rabaud C. and May T. Glycopeptides. Encycl Méd Chir, Maladies infectieuses, 8-004-L-10, 2007: 7 p. |
[32] | Singh K., Panghal M., Kadyan S., Chaudhary U. and Yadav J. P. Green silver nanoparticles of Phyllanthus amarus: as an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa. Journal of Nanobiotechnology, 2014, 12-40 |
[33] | Kuppusamy P., Yusoff M. M., Gaanty P. M., Natanamurugaraj G.. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharmaceutical Journal, 2016, 24:473-484 |
[34] | Shakeel A., Mudasir A., Babu L. S., Saiqa I. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 2016, 7:17-28 |
[35] | Prateek M., Swati J., Suman R. & Jain N. K. Pharmaceutical aspects of silver nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 1-13. https://doi.org/10.1080/21691401.2017.1414825 |
[36] | Jaishankar M., Tseten T., Anbalagan N., Mathew B. B., Beeregowda N. K. Toxicity, mechanism and health effects of some heavy metals. Toxicology, 2014, 7(2):60-72. doi: 10.2478/intox-2014-0009 |
[37] | Xi-Feng Z., Zhi-Guo L., Wei S. Sangiliyandi G. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International Journal of Molecular Sciences, 2016, 17(1534):1-34. doi:10.3390/ijms17091534 |
[38] | Abhishek K., Navin P., Banerjee U. C. Green synthesis of Silver Nanoparticles. Current Research & Information on Pharmaceuticals Sciences, 2010, 11(4):69-71. |
[39] | Chen S., Li X., Sun G., Zhang Y., Su J. and Ye J. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7. International Journal of Molecular Sciences, 2015, 16, 23390-23404; doi:10.3390/ijms161023390 |
[40] | Knapp W. C., Callan C. A., Aitken B., Shearn R., Koenders A., Hinwood A.. Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environmental Science and Pollution Research, 2017, 24:2484-2494. DOI 10.1007/s11356-016-7997-y |
[41] | Tchounwou B. P., Yedjou G. C., Patlolla K. A., Sutton J. D. Heavy metals toxicity and the environment. Molecular, Clinical and Environmental Toxicology, 2012, 101:133-164. doi: 10.1007/978-3-7643-8340-4_6 |
APA Style
Koto-te-Nyiwa Ngbolua, Gédéon Ngiala Bongo, Amogu Domondo, Beaudrique Nsimba, Jeff Iteku, et al. (2018). Synthesis and Bioactivity of Silver Nanoparticles Against Bacteria (E. coli and Enterococcus sp. ) Isolated from Kalamu River, Kinshasa City, Democratic Republic of the Congo. Frontiers in Environmental Microbiology, 4(1), 29-40. https://doi.org/10.11648/j.fem.20180401.15
ACS Style
Koto-te-Nyiwa Ngbolua; Gédéon Ngiala Bongo; Amogu Domondo; Beaudrique Nsimba; Jeff Iteku, et al. Synthesis and Bioactivity of Silver Nanoparticles Against Bacteria (E. coli and Enterococcus sp. ) Isolated from Kalamu River, Kinshasa City, Democratic Republic of the Congo. Front. Environ. Microbiol. 2018, 4(1), 29-40. doi: 10.11648/j.fem.20180401.15
AMA Style
Koto-te-Nyiwa Ngbolua, Gédéon Ngiala Bongo, Amogu Domondo, Beaudrique Nsimba, Jeff Iteku, et al. Synthesis and Bioactivity of Silver Nanoparticles Against Bacteria (E. coli and Enterococcus sp. ) Isolated from Kalamu River, Kinshasa City, Democratic Republic of the Congo. Front Environ Microbiol. 2018;4(1):29-40. doi: 10.11648/j.fem.20180401.15
@article{10.11648/j.fem.20180401.15, author = {Koto-te-Nyiwa Ngbolua and Gédéon Ngiala Bongo and Amogu Domondo and Beaudrique Nsimba and Jeff Iteku and Emmanuel Lengbiye and Colette Ashande and Tshiama Claudine and Clément Inkoto and Lufuluabo Lufuluabo and Pitchouna Kilunga and Goslin Gafuene and Crispin Mulaji and Théophile Mbemba and John Poté and Pius Mpiana}, title = {Synthesis and Bioactivity of Silver Nanoparticles Against Bacteria (E. coli and Enterococcus sp. ) Isolated from Kalamu River, Kinshasa City, Democratic Republic of the Congo}, journal = {Frontiers in Environmental Microbiology}, volume = {4}, number = {1}, pages = {29-40}, doi = {10.11648/j.fem.20180401.15}, url = {https://doi.org/10.11648/j.fem.20180401.15}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.fem.20180401.15}, abstract = {The emergence of new infectious agents is a potential risk associated with genetic manipulation and field cultivation of genetically modified organisms and constitutes a new challenge in molecular epidemiology. The main objective of the current study was to synthesize silver nanoparticles and evaluate the antibacterial activity of these nanoparticles. E. coli and Enterococcus sp. were isolated from wastewater samples collected from Kalamu River. The preliminary characterization of silver nanoparticles was carried out using UV-visible spectrophotometer. Noble metals, such as silver nanoparticles, exhibit unique and adjustable optical properties due to their external plasmon resonance. The reduction of silver ions was monitored by measuring the UV-visible spectrum of the solutions after dilution of a small aliquot (0.2 mL) of the aqueous component. The antibiotic susceptibility test results confirmed the inactivity of these antibiotics tested against the wild strain of Enterococcus sp. The synthesized silver nanoparticles displayed a good antibacterial activity against Enterococcus sp. The synthesis of silver nanoparticles is designed precisely to alleviate this situation; and these results provide a strong evidence that silver nanoparticles can be used to fight antibiotic-resistant bacteria.}, year = {2018} }
TY - JOUR T1 - Synthesis and Bioactivity of Silver Nanoparticles Against Bacteria (E. coli and Enterococcus sp. ) Isolated from Kalamu River, Kinshasa City, Democratic Republic of the Congo AU - Koto-te-Nyiwa Ngbolua AU - Gédéon Ngiala Bongo AU - Amogu Domondo AU - Beaudrique Nsimba AU - Jeff Iteku AU - Emmanuel Lengbiye AU - Colette Ashande AU - Tshiama Claudine AU - Clément Inkoto AU - Lufuluabo Lufuluabo AU - Pitchouna Kilunga AU - Goslin Gafuene AU - Crispin Mulaji AU - Théophile Mbemba AU - John Poté AU - Pius Mpiana Y1 - 2018/03/08 PY - 2018 N1 - https://doi.org/10.11648/j.fem.20180401.15 DO - 10.11648/j.fem.20180401.15 T2 - Frontiers in Environmental Microbiology JF - Frontiers in Environmental Microbiology JO - Frontiers in Environmental Microbiology SP - 29 EP - 40 PB - Science Publishing Group SN - 2469-8067 UR - https://doi.org/10.11648/j.fem.20180401.15 AB - The emergence of new infectious agents is a potential risk associated with genetic manipulation and field cultivation of genetically modified organisms and constitutes a new challenge in molecular epidemiology. The main objective of the current study was to synthesize silver nanoparticles and evaluate the antibacterial activity of these nanoparticles. E. coli and Enterococcus sp. were isolated from wastewater samples collected from Kalamu River. The preliminary characterization of silver nanoparticles was carried out using UV-visible spectrophotometer. Noble metals, such as silver nanoparticles, exhibit unique and adjustable optical properties due to their external plasmon resonance. The reduction of silver ions was monitored by measuring the UV-visible spectrum of the solutions after dilution of a small aliquot (0.2 mL) of the aqueous component. The antibiotic susceptibility test results confirmed the inactivity of these antibiotics tested against the wild strain of Enterococcus sp. The synthesized silver nanoparticles displayed a good antibacterial activity against Enterococcus sp. The synthesis of silver nanoparticles is designed precisely to alleviate this situation; and these results provide a strong evidence that silver nanoparticles can be used to fight antibiotic-resistant bacteria. VL - 4 IS - 1 ER -