| Peer-Reviewed

Initial Study on Simulated Borate Concentrate In-Drum-Drying by Microwave

Received: 11 October 2018     Accepted: 28 December 2018     Published: 29 January 2019
Views:       Downloads:
Abstract

Drying the Borate Concentrate in Drum is one of the most useful method to reduce the total waste volume. Microwave is one heat option, To determinate the feasibility for Microwave-Drying of Simulated Borate Concentrate in Drum, a Sequence of tests have been designed, including pre-test in microwave oven and batch-test in 12L microwave device. Liquid temperature, evaporation rate and moisture have been recorded along with the drying process. The result said that it is feasible for microwave drying simulated borate concentrate in drum. For borate concentrate will generate “water diffusion barrier layer” during the drying process, batch-feeding is the prefer option; the most suitable batch-feeding amount is a compromise for evaporation, gravity, and intermolecular forces which affect the migration of water molecules. It is recommend that the batch feeding should be used for MDSBCD and the off gas temperature can be a sign of subsequence feeding; the first feeding must be moderate to avoid microwave reflection; the little batch-feeding amount is, the better product characters are. In the test, it is reasonable that the material can be supplemented or the drying be stopped when the temperature of ending vent raises to 72°C and keep increase rapidly; the first-feeding can be 2kg SBC, after- feeding can be 1kg SBC.

Published in Engineering Science (Volume 3, Issue 4)
DOI 10.11648/j.es.20180304.13
Page(s) 51-57
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2019. Published by Science Publishing Group

Keywords

Simulated Borate Concentrate, Microwave Drying, In-Drum Drying, Waste Treatment

References
[1] Su Linsen, Yang Huiyu, Wang Fusheng, etc. 900MW PWR nuclear power plant system and equipment (Vo1 1) [M]. Beijing: Atomic Energy Press, 2005, 224-253. (in Chinese).
[2] Gu Zhongmao. Waste treatment and disposal [M]. Beijing: Atomic Energy Press, 2011. (in Chinese).
[3] Gong Li, Cheng Li, etc. Study on cement solidification of boric acid waste liquid and concentrated waste liquid produced by PWR nuclear power station [J]. Radiation Protection, 1995, 1. (in Chinese).
[4] Huang Laixi, He Xinwen, Chen Dejin, etc. Radioactive solid waste management in Dayawan nuclear power station [J]. Radiation Protection, 2004, 2. (in Chinese).
[5] IAEA. Methods for the Minimization of Radioactive Waste from Decontamination and Decommissioning of Nuclear Facilities [R]. Vienna: IAEA, 2001, 37-38.
[6] IAEA. Innovative Waste Treatment and Conditioning Technologies at Nuclear Power Plants [R]. Vienna: IAEA, May, 2006: 30-31.
[7] IAEA. Processing of Nuclear Power Plant Waste Streams Containing Boric Acid [R]. Vienna: IAEA, 1996.
[8] Frank. Richard. Radioactive Waste Management for U.S. EPR [R]. WM Conference, 2008.
[9] H. Gen thner, A. Best, W. Lins. Solidification of Low Level Salt Solutions With Microwave [EB/OL]: Google Scholar.
[10] Wetteborn K, Gutmann A, Linn H, et al. Apparatus for Concentrating Salt-Containing Solutions with Microwave Energy: US Patent, 6080977[P]. 2000-06-27.
[11] Giessmann Christian. Microwave in-Drum Drying [J]. Rad waste Solutions, 2007:21-24.
[12] Szalo Anton, Zatkulak Milan. Borate Compound Content Reduction in Liquid Radioactive Waste from Nuclear Power Plants with VVER Reactor [R]. Slovenia, September, 2000.
[13] T. L. White, J. B. Berry. Microwave Processing of Radioactive Materials-1[R]. Dallas, Texas: American Chemical Society, 1989.
[14] G. S. Sprenger, V. G. Eschen. Critical Operating Parameters for Microwave Solidification of Hydroxide Sludge [R]. Technology Development, Waste Projects EG&G Rocky Flats, Rocky Flats Plant, 1993-10-26.
[15] Dixon D, Erle R, Eschen V, et al. Microwave Solidification Development for Rocky Flats Waste [EB/OL].: http://www.osti.gov, 1994-04.
[16] Erle R R, Eschen V G, Sprenger G S. Optimization of Microwave Heating in an Existing Cubicle Cavity by Incorporating Additional Wave Guide and Control Components [R]. USDOE, 1995.
[17] T. L. White. Microwave Applicator for in-Drum Processing of Radioactive Waste Slurry: US Patent, 5324485[P]. 1994-06-28.
[18] Sprenger G S, Petersen R D. Microwave Waste Processing Technology Overview [EB/OL]: http://www.osti.gov/bridge/servlets, 1993-02.
[19] T. L. White, E. L. Youngblood, J. B. Berry. First Result of In-can Microwave Processing Experiments for Radioactive Liquid Wastes at Oak Ridge National Laboratory [EB/OL]: http://www.osti.gov/bridge/servlets, 2010.
[20] T. L. White, E. L. Youngblood, J. B. Berry, and A. J. Mattus. Status of Microwave Process Development for RH-TRU Wastes at Oak National Laboratory [EB/OL]: http://www.osti.gov/bridge/servlets, 2010.
[21] T. L. White. Heat Transfer Enhanced Microwave Process for Stabilization of Liquid Radioactive Waste Slurry [R]. CRADA, 1995-03-31.
[22] RWE. In-drum Drying by Microwave [EB/OL]: Website of RWE and Nukem Nuklear publication, 2011.
Cite This Article
  • APA Style

    Meilan Jia, Chao Gao, Hongxiang An, Honghui Li. (2019). Initial Study on Simulated Borate Concentrate In-Drum-Drying by Microwave. Engineering Science, 3(4), 51-57. https://doi.org/10.11648/j.es.20180304.13

    Copy | Download

    ACS Style

    Meilan Jia; Chao Gao; Hongxiang An; Honghui Li. Initial Study on Simulated Borate Concentrate In-Drum-Drying by Microwave. Eng. Sci. 2019, 3(4), 51-57. doi: 10.11648/j.es.20180304.13

    Copy | Download

    AMA Style

    Meilan Jia, Chao Gao, Hongxiang An, Honghui Li. Initial Study on Simulated Borate Concentrate In-Drum-Drying by Microwave. Eng Sci. 2019;3(4):51-57. doi: 10.11648/j.es.20180304.13

    Copy | Download

  • @article{10.11648/j.es.20180304.13,
      author = {Meilan Jia and Chao Gao and Hongxiang An and Honghui Li},
      title = {Initial Study on Simulated Borate Concentrate In-Drum-Drying by Microwave},
      journal = {Engineering Science},
      volume = {3},
      number = {4},
      pages = {51-57},
      doi = {10.11648/j.es.20180304.13},
      url = {https://doi.org/10.11648/j.es.20180304.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.es.20180304.13},
      abstract = {Drying the Borate Concentrate in Drum is one of the most useful method to reduce the total waste volume. Microwave is one heat option, To determinate the feasibility for Microwave-Drying of Simulated Borate Concentrate in Drum, a Sequence of tests have been designed, including pre-test in microwave oven and batch-test in 12L microwave device. Liquid temperature, evaporation rate and moisture have been recorded along with the drying process. The result said that it is feasible for microwave drying simulated borate concentrate in drum. For borate concentrate will generate “water diffusion barrier layer” during the drying process, batch-feeding is the prefer option; the most suitable batch-feeding amount is a compromise for evaporation, gravity, and intermolecular forces which affect the migration of water molecules. It is recommend that the batch feeding should be used for MDSBCD and the off gas temperature can be a sign of subsequence feeding; the first feeding must be moderate to avoid microwave reflection; the little batch-feeding amount is, the better product characters are. In the test, it is reasonable that the material can be supplemented or the drying be stopped when the temperature of ending vent raises to 72°C and keep increase rapidly; the first-feeding can be 2kg SBC, after- feeding can be 1kg SBC.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Initial Study on Simulated Borate Concentrate In-Drum-Drying by Microwave
    AU  - Meilan Jia
    AU  - Chao Gao
    AU  - Hongxiang An
    AU  - Honghui Li
    Y1  - 2019/01/29
    PY  - 2019
    N1  - https://doi.org/10.11648/j.es.20180304.13
    DO  - 10.11648/j.es.20180304.13
    T2  - Engineering Science
    JF  - Engineering Science
    JO  - Engineering Science
    SP  - 51
    EP  - 57
    PB  - Science Publishing Group
    SN  - 2578-9279
    UR  - https://doi.org/10.11648/j.es.20180304.13
    AB  - Drying the Borate Concentrate in Drum is one of the most useful method to reduce the total waste volume. Microwave is one heat option, To determinate the feasibility for Microwave-Drying of Simulated Borate Concentrate in Drum, a Sequence of tests have been designed, including pre-test in microwave oven and batch-test in 12L microwave device. Liquid temperature, evaporation rate and moisture have been recorded along with the drying process. The result said that it is feasible for microwave drying simulated borate concentrate in drum. For borate concentrate will generate “water diffusion barrier layer” during the drying process, batch-feeding is the prefer option; the most suitable batch-feeding amount is a compromise for evaporation, gravity, and intermolecular forces which affect the migration of water molecules. It is recommend that the batch feeding should be used for MDSBCD and the off gas temperature can be a sign of subsequence feeding; the first feeding must be moderate to avoid microwave reflection; the little batch-feeding amount is, the better product characters are. In the test, it is reasonable that the material can be supplemented or the drying be stopped when the temperature of ending vent raises to 72°C and keep increase rapidly; the first-feeding can be 2kg SBC, after- feeding can be 1kg SBC.
    VL  - 3
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • China Institute of Radiation Protection, Taiyuan, China

  • China Institute of Radiation Protection, Taiyuan, China

  • China Institute of Radiation Protection, Taiyuan, China

  • China Institute of Radiation Protection, Taiyuan, China

  • Sections