American Journal of Bioscience and Bioengineering

| Peer-Reviewed |

Food Habit, Spatial, and Dietary Niche Overlap of Three Sympatric Insectivorous Bats (Chiroptera) in the West Region of Cameroon

Received: Jun. 05, 2023    Accepted: Jul. 13, 2023    Published: Sep. 27, 2023
Views:       Downloads:

Share

Abstract

We studied the diet and the overlap of diet and spatial niches of three common insectivorous bats: Hipposideros fuliginosus, Rhinolophus landeri and Chaerephon pumilus in the West region of Cameroon from December 2016 to November 2018. Bats were captured using standard mist netting and fecal analyses carried out. Five fecal pellets were randomly chosen from each bat, moisten with water and separated into fine pieces and observed under a binocular microscope. The result reveals that these species fed mainly on coleopterans, lepidopterans and hemipterans. Diet of these bats exhibited a high level of overlap, with the highest value between C. pumilus and R. landeri, with an overlap percentage of 76.6%, followed by H. fuliginosus and R. landeri, with an overlap percentage of 69.2%. The lowest overlap, with a percentage of 28.2% is between C. pumilus and H. fuliginosus. Also, communities of the R. landeri are spatially distant from those of C. pumilus and H. fuliginosus with the lowest spatial overlap between the pair C. pumilus and R. landeri followed by R. landeri and H. fuliginosus. Our results show that these three species consume the similar types of insect prey, but they take different proportions. Moreover, resource partitioning by these insectivorous bats is likely to occur in accordance with the abundance and seasonal availability of insect prey. Furthermore, our results provide baseline data for several insectivorous bats in Cameroon whose dietary and spatial co-existence has never been studied.

DOI 10.11648/j.bio.20231105.11
Published in American Journal of Bioscience and Bioengineering ( Volume 11, Issue 5, October 2023 )
Page(s) 55-65
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

West Region, Cameroon, Bat, Niche, Co-existence, Overlap

References
[1] Aldridge, H., Rautenbach, I. 1987. Morphology, echolocation and resource partitioning in insectivorous bats. The Journal of Animal Ecology, 56: 763–778.
[2] Altringham, J. D. 2011. Bats from evolution to conservation, 2nd edition. Oxford University Press, Oxford, 319 pp.
[3] Andreas, M., Reiter, A., Benda, P. 2011. Prey Selection and Seasonal Diet Changes in the Western Barbastelle Bat (Barbastella barbastellus). Acta Chiropterologica, 14: 81–92.
[4] Andrianaivoarivelo, A. R., Ranaivoson, N., Racey, P. A., Jenkins, R. K. B. 2006. The diet of three synanthropic bats (Chiroptera: Molossidae) from eastern Madagascar. Acta Chiropterologica, 8 (2): 439–444.
[5] Arlettaz, R. 1999. Habitat selection as a major ressource paritioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blyhtii. J. Anim. Ecol, 68 460-471.
[6] Atagana, P. J., Bakwo Fils, E. M., Mbeng, D. W., Tsague, K. J. A., Kekeunou, S. 2018. The bat fauna of the Mpem and Djim National Park, Cameroon (Mammalia Chiroptera). Biodiversity Journal, (9): 241-254.
[7] Backwo Fils, E. M. 2009. Inventaire des chauves-souris de la réserve de biosphère du Dja, cameroun. Vespère, (2): 71-85.
[8] Bakwo Fils, E. M., Bol A Anong, D., Badoana, T. D., Guieké, B., Tsala, D. E., Kuate, F. A. 2014. Diversity of bats of the Far North Region of Cameroon–with two first records for the country. Biodiversity, 15 (1): 16-22.
[9] Bakwo Fils, E. M. 2010. The Bats of Cameroon: proving the benefits of the forgoten fruit bats. Bats, 28: 11–13.
[10] Belwood, J. J., Fenton, M. B. 1976. Variation in the diet of Myotis lucifugus (Chiroptera: Vespertilionidae). Canadian Journal of Zoology, 54: 1674-1678.
[11] Benarbia, A. & Fentrouci, B. 2017. Caractérisation Morphométrique, de quelques espèces de la chauves-sauries en Algérie Occidentale et Application Bioinformatique en Génétique. Mémoire de Master en Génétique: Gestion et amélioration et ressources biologiques, UNIVERSITE de TLEMCEN.
[12] Bogdanowicz, W., Fenton, M. B., Daleszczyk, K. 1999. The relationships between echolocation calls, morphology and diet in insectivorous bats. Journal of Zoology, 247: 381–393.
[13] Bohmann, K., Monadjem, A., Noer, C. L., Rasmussen, M., Zeale, M. R. K., Clare, E., Jones, G., Willerslev, E. & Gilbert, M. T. P. 2011. Molecular Diet Analysis of Two African Free-Tailed Bats (Molossidae) Using High Throughput Sequencing. PloS one, 6e21441.
[14] Bol A Anong, A. G. 2013. Investigations sur le régime alimentaire de trois Chauves-souris insectivores de la région de l’Extrême-Nord Cameroun: Mémoire présenté en vu de l’obtention d’un MASTER II à l’Université de Maroua-Cameroun.
[15] Borror & White. 1970. Clé d’identification des ordres d’insectes adultes. Gilles Bourbonnais / Cégep de Sainte-Foy.
[16] Brigham, R. M., Randeus, G., Saunders. 1990. The diet of big brown bats in relation to insect availability in southern Alberta, Canada. Northwest Science, 64: 7-10.
[17] Brown, J. H. 1968. Activity patterns of some neotropical bats. Journal of Mammalogy, 49: 754-757.
[18] Burles, D. W., Brigham, R. M., Ring, R. A., Reimchen, T. E. 2008. Diet of two insectivorous bats, Myotis lucifugus and Myotis keenii, in relation to arthropod abundance in a temperate Pacific Northwest rainforest environment. Canadian Journal of Zoology, 86: 1367–1375.
[19] Colwell RK, Futuyma DJ. On the measurement of niche breadth and overlap. Ecology, 52: 567-576.
[20] De Jong, J. 1994. Habitat use, home-range and activity pattern of the northern bat, Eptesicus nilssoni, in a hemiboreal coniferous forest. Mammalia, 58: 535-548.
[21] Delaval, M. 2004. Impacts des perturbations d’origine anthropique sur les peuplements de chauves-souris en Guyane Française. THESE de DOCTORAT de l’UNIVERSITE PARIS 6.
[22] Delvare, G. & Aberlanc, H. P. 1989. Les insectes d’Afrique et d’Amérique-Tropicale. Clés pour la reconnaissance des familles. CIRAD (Centre de Coopération Internationale en Recherche Agronomique pour le Développement), Montpellier, 302 pp.
[23] Dodd, L. E., Lacki, M. J., Rieske, L. K. 2008. Variation in moth occurrence and implications for foraging habitat of Ozark big-eared bats. Forest Ecology and Management, 255: 3866–3872.
[24] Downs, N. C., Racey, P. A. 2006. The use by bats of habitat features in mixed farmland in Scotland. Acta Chiropterologica, 8: 169-185.
[25] Emrich, M. A. 2013. Structure of an Ensemble of Insectivorous Bats. Electronic Thesis and Dissertation Repository. 1332. https://ir.lib.uwo.ca/etd/1332.
[26] Estrada, A. & Coates-Estrada, R. 2002. Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biological Conservation Vol. 103, Iss. 2, pp. 237-245.
[27] Feldhamer, G. A., Carter, T. C., John, O., The, S., Midland, A., Whitaker, J. O. 2009. Prey Consumed by Eight Species of Insectivorous Bats from Southern Illinois. The American Midland Naturalist, 162: 43–51.
[28] Felix, J. 1950. Géographie des dénudations et dégradation des sols au Cameroun. Ministère Français d’outre Mer. In Bulletin scientifique, Vol. III, n° 127.
[29] Fenton, M. 1990. The foraging behaviour and ecology of animal-eating bats. Canadian Journal of Zoology, 68: 411–422.
[30] Fenton, M. B. 1975. Observations on the Biology of some Rhodesian bats, including a key to the Chiroptera of Rhodesia. Life Sciences Royal Ontario Museum, University of Toronto, 104: 1 – 27.
[31] Findley, J., Black, H. 1983. Morphological and dietary structuring of a Zambian insectivorous bat community. Ecology, 64: 625–630.
[32] Fukui, D., Okazaki, K., Maeda, K., 2009. Diet of three sympatric insectivorous bat species on Ishigaki Island, Japan. Endangered Species Research, 8: 117–128.
[33] Happold, M. & Happold, D. C. D. 2013. Mammals of Africa Volume IV: Hedgehogs, shrews and bats. Bloomsbury Publishing, London 800 pp.
[34] Hardin, G. 1960. The competitive exclusion principle. Science, 131, 1292–1297.
[35] Hayman, R. W. & Hill, J. E. 1971. The Mammals of Africa: An identification manual. Part2. Order Chiroptera. Smithsonian Institution Press. Washington, D. C 73 pp.
[36] Hickey, M. B. C., Acharya, L., Pennington, S. 1996. Resource partitioning by two species of vespertilionid bats (Lasiurus cinereus and Lasiurus borealis) feeding around street lights. Journal of Mammalogy, 77: 325–334.
[37] Hurlbert, S. H. 1978. The measurement of niche overlap and some relatives. Ecology, 59: 67–77.
[38] Jacobs D. (S.), F. P. D., Cotterill, P. J., Taylor, A, Monadjem. 2008an. Rhinolophus landeri. In IUCN 2009: IUCN Red List of Threatened Species. Version 2009. 2.www.iucnredlist.org.
[39] Jacobs, D., Barclay, R. 2009. Niche differentiation in two sympatric sibling bat species, Scotophilus dinganii and Scotophilus mhlanganii. Journal of Mammalogy, 90: 879–887.
[40] Jones, G. & Rydell, J. 2003. Attack and defense interaction between echolocating bats and their prey. In Bat ecology, eds. T. H. Kunz & M. B. Fenton, pp. 301-345. The University of Chicago Press, Chicago.
[41] Kalko, E. 1995. Insect pursuit, prey capture and echolocation in pipestirelle bats (Microchiroptera). Animal Behaviour, 50: 861–880.
[42] Kalko, E. K. V. 2004. Neotropical leaf-nosed bats (Phyllostomidae):“Whispering” bats or candidates for acoustic survey. Proceedings of a Workshop on Identification and Acoustic Monitoring of Bats, M. Brigham, G. Jones, and EKV Kalko, eds. Austin, TX: Bat Conservation International.
[43] Kock, D. 1969. Die Fledermaus-Fauna des Sudan (Mammalia, Chiroptera). Abhandlungen der Senckenbergischen naturforschenden Gesellschaft, 521: 1–238.
[44] Kotler, B. P., Brown, J. S. 1988. Environmental heterogeneity andthe coexistence of desert rodents. Annual Review of Ecologyand Systematics, 19: 281–307.
[45] Krebs, C. J. 1971. Ecological methodology. 2nd ed. Boston: Addison Wesley Longman.
[46] Krebs, C. J. 2014. Ecological methodology. 3rd edition, in preparation with online text. Available from: http://www zoology.ubc.ca/~krebs/books.html.
[47] Krull, D., Schumm, A., Metzner, W., Neuweiler, G. 1991. Foraging areas and foraging behavior in the notch-eared bat, Myotis emerginatus (Vespertilionidae). Behavioral Ecology and Sociobiology, 28: 247-253.
[48] Kunz, T. H., Braun de Torrez, E., Bauer, D., Lobova, T., Fleming, T. H. 2011. Ecosystem services provided by bats. Annals of the New York Academy of Sciences 1223: 1-38.
[49] Kunz, T. H. & Fenton, B. B. 2005. Bat ecology, University of Chicago Press, Chicago, Ill.
[50] Kunz, T. H. & Fenton, M. B. (eds.) 2003. Bat ecology. University of Chicago Press, Chicago, Illinois, 778 pp.
[51] Kunz, T. H., Whitaker Jr, J. O. 1983. An evaluation of fecal analyses for determining food habits of insectivorous bats. Canadian Journal of Zoology, 61: 1317-1321.
[52] Kurta, A., Whitaker Jr, J. O. 1996. Diet of endangered Indiana bat, Myotis sodalis in Michigan. Bat Research News, 37: 139.
[53] Lawer, E. A., Darkoh, E. L. 2016. Effects of agroecosystems on insect and insectivorous bat activity: a preliminary finding based on light trap and mist net captures. Turkish Journal of Zoology, 40: 423-432.
[54] Leelapaibul, W, Bumrungsri, S, Pattanawiboon, A. 2005. Diet of wrinkle-lipped free-tailed bat (Tadarida plicata Buchannan, 1800) in central Thailand: insectivorous bats potentially act as biological pest control agents. Acta Chiropterologica, 7: 111–119.
[55] Letouzey, R. 1968. Etude phytogéographique du Cameroun. Lechevalier, Paris. 508 p.
[56] Levins, R. 1968. Evolution in changing environments. Princeton University Press, Princeton.
[57] Lino, A., Fonseca, C., Goiti, U., Pereira, M. J. R. 2014. Prey selection by Rhinolophus hipposideros (Chiroptera, Rhinolophidae) in a modified forest in Southwest Europe. Acta Chiropterologica, 16 (1): 75–83.
[58] Menzel, J., Menzel, M., Kilgo, J. 2005. Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina. Journal of Wildlife Management, 69: 235–245.
[59] Mickleburgh, S., Hutson, A. M., Racey, A. P., Ravino, J., Bergmans, W., Cotterill, D. P. F. & Gerlach, J. 2008dr. Tadarida pumila. In IUCN 2009: IUCN Red List of Threatened Species. Version 2009. 2. www.iucnredlist.org.
[60] Monadjem, A., Juste, J., Bergmans, W., Mickleburgh, S., Hutson, A. M., Fahr, J. 2017c. Hipposideros fuliginosus. The IUCN Red List of Threatened Species 2017: e. T10134A22090466.http://dx.doi.org/10.2305/IUCN. UK. 2017-2. RLTS. T10134 A22090466.
[61] Nicholls, B. & Racey, P. 2006. Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Ecography, 29: 697–708.
[62] Olivry, J. C. 1976. Régimes Hydrologiques en Pays Bamiléké (Cameroun). Thèse Présentée à l'Université des Sciences et Techniques du Languedoc pour obtenir le grade de Docteur de Spécialité (Géologie Appliquée, mention Hydrologie) 3e Cycle.
[63] Patterson, B. D., Webala, P. W. 2012. Keys to the East African Bats. Fieldiana: Life and Earth Sciences (Museum of Natural History) 60p.
[64] Pianka, E. R. 1973. The structure of lizard communities. Annual Review of Ecology and Systematics, 4: 53–74.
[65] Pokhrel, S., Budha, P. B. 2014. Key to Identify Insects from Droppings of Some Insectivorous Bats of Nepal. Journal of Institute of Science and Technology, 19 (1): 129-136.
[66] R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
[67] Rubsamen R, G. Neuweiler, G. Marimuthu 1999. Ontogenesis of tonotopy in inferior colliculus of a hipposiderid bat reveals postnatal shift in frequency-place codeJ Comp Physiol [A], 165, pp. 755-769.
[68] Rakotoarivelo, A. A., Ranaivoson, N., Ramilijaona, O. R., Kofoky, A. F., Racey, P. A., Jenkins, R. K. B. 2007. Seasonal food habits of five sympatric forest microchiropterans in western Madagascar. Journal of Mammalogy, 88: 959-966.
[69] Rakotondramanana, C. F., Rajemison, B., Goodman, S. M. 2015. Comportement alimentaire des communautés de chauves-souris animalivores de Kirindy (CNFEREF) et d’Antsahabe, Madagascar: répartition, partage et disponibilité de niche alimentaire. Malagasy Nature, 9: 68-87.
[70] Ramasindrazana, B., Rajemison, B., Goodman, S. M. 2012. Bioécologie des chauves-souris du Parc National de Tsimanampetsotsa. 2. Variation interspécifique et saisonnière du régime alimentaire. Malagasy Nature, 6: 117-124.
[71] Rasoanoro, M., Ramasindrazana, B., Rajemison, B., Razafimahatratra, E., Goodman, S. M. 2015. Préférence alimentaire des chauves-souris de Kianjavato, région de Vatovavy-Fitovinany, Madagascar. Malagasy Nature, 9: 58-67.
[72] Razakarivony, V., Rajemison, B., Goodman, S. M. 2005. The diet of Malagasy Microchiroptera based on stomach contents. Acta Chiropterologica, 9: 312-316.
[73] Rivière, Y. 2000. Paysages et Agroforets en Pays Bamiléké (Ouest-cameroun) Mémoire de stage « en Gestion des Systemes Agro-Sylvo-Pastoraux en Zones Tropicales ». Universite de Dschang Cameroun.
[74] Robinson, M. F., Stebbings, R. E. 1993. Food of the serotine bat, Eptesicus serotinus. Is faecal analysis a valid qualitative and quantitative technique? J. Zool Lond, 231: 239-248.
[75] Rosevear, D. R. 1965. The Bats of West Africa, Trustees of the British Museum (Natural History), London 401p.
[76] Russell, P. J., Wolfe, S. L., Hertz, P. E., Starr, C., Fenton, M. B., Addy, H., Maxwell, D., Haffie, T. & Davey, K. 2010. Biology: Exploring the Diversity of Life. Thomson Brooks/Cole.
[77] Russo, D., Cistrone, L., Garonna, A. P., Jones, G. 2010. Reconsidering the importance of harvested forests for the conservation of tree-dwelling bats. Biodiversity and Conservation, 19: 2501–2515.
[78] Rydell, J., Entwistle, A. C., Racey, P. A. 1996. Timing of foraging flights of three species if bats in relation to insect activity and predation risk. OIKOS, 76: 243-252.
[79] Safi, K., Kerth, G. 2004. A Comparative Analysis of Specialization and Extinction Risk in Temperate-Zone Bats. Conservation Biology, 18: 1293-1303.
[80] Schnitzler, H. U. & Kalko, E. K. V. 1998. How echolocating bats search and find food. Pages 183–196 in Kunz TH, Racey PA, eds. Bat Biology and Conservation. Washington (DC): Smithsonian Institution Press.
[81] Schnitzler, H. -U., Moss, C. F., Denzinger, A. 2003. From spatial orientation to food acquisition in echolocating bats. Trends in Ecology & Evolution, 18: 386–394.
[82] Scholtz, C. H. & Holm, E. 1989. Insects of Southern Africa. Buttterworths, Johannesburg, 502 pp.
[83] Selva Ponmalar, S., Juliet Vanitharani. 2014. Insect pest management by the horse shoe bats (Rhinolophus species) in the forest ecosystem of Kalakad Mundanthurai Tiger Reserve, India. Scrutiny International Research Journal of Biological and Environmental Science (SIRJ-BES), 1: 5.
[84] Siemers, B. M., Swift, S. M. 2006. Differences in sensory ecology contribute to resource partitioning in the bats Myotis bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behavioral Ecology and Sociobiology, 59: 373–380.
[85] Srinivasulu, B., Srinivasulu, C. 2005. Diet of the black-bearded tomb bat Taphozous melanopogon Temminck, 1841 (Chiroptera: Emballonuridae) in India. Zoos’ Print Journal, 20: 1935–1938.
[86] Taylor, P. J. 2000 Bats of southern Africa. University of Natal Press, Pietermaritzburg.
[87] Temgoua, L. F. 2011. Déterminants socio-économiques et écologiques de la plantation d’arbres producteurs de bois d’œuvre et d’artisanat dans l’Ouest du Cameroun. Thèse de Doctorat en « Géographie tropicale », Université Michel de Montaigne Bordeaux 3.
[88] Vaughan, T. A. 1970. Flight patterns and aerodynamics. Biology of Bats 1 (ed W. A. Wimsatt), pp. 195–216. Academic Press, New York.
[89] Verboom, B., Huitema, H. 1997. The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landscape Ecology, 12: 117-125.
[90] Voigt, C. C. & Holderied, M. W. 2012. High manoeuvring costs force narrow-winged molossid bats to forage in open space. Journal of Comparative Physiology, 182B: 415–424.
[91] Weterings, R., Umponstira, C. 2014. Bodyweight-forearm ratio, cranial morphology and call frequency relate to prey selection in insectivorous bats. Electronic Journal of Biology, 10: 21–27.
[92] Weterings, R., Wardenaar, J., Dunn, S., Umponstira, C. 2015. Dietary analysis of five insectivorous bat species from Kamphaeng Phet, Thailand. Raffles Bulletin of Zoology, 63: 91–96.
[93] Whitaker Jr, J. O. 1988. Food habits analysis of insectivorous bats. In Ecological and Behavioral Methods for the Study of Bats. T. H, Kunz, Ed: 171–189. Smithsonian Institution Press. Washington, DC. 32.
[94] Whitaker Jr, J. O. 1994. Food availability opportunistic versus selective feeding in insectivorous bats. Bat Research News, 35: 75-77.
[95] Whitaker Jr, J. O., McCracken, G. F., Siemers, B. M. 2009. Food habits analysis of insectivorous bats. In Ecological and behavioral methods for the study of bats, 2nd edition, eds. TH Kunz and S Parsons, pp. 567–592. The Johns Hopkins University Press, Baltimore.
[96] Zhang, L., Jones, G., Rossiter, S., Ades, G., Liang, B., Zhang, S. 2005. Diet of flatheaded bats, Tylonycteris pachypus and T. robustula, in Guangxi, south China. Journal of Mammalogy, 86: 61–66.
Cite This Article
  • APA Style

    Manfothang Dongmo Ervis, Bakwo Fils Eric-Moise, Manga Mongombe Aaron, Tchuenguem Fohouo Fernand-Nestor. (2023). Food Habit, Spatial, and Dietary Niche Overlap of Three Sympatric Insectivorous Bats (Chiroptera) in the West Region of Cameroon. American Journal of Bioscience and Bioengineering, 11(5), 55-65. https://doi.org/10.11648/j.bio.20231105.11

    Copy | Download

    ACS Style

    Manfothang Dongmo Ervis; Bakwo Fils Eric-Moise; Manga Mongombe Aaron; Tchuenguem Fohouo Fernand-Nestor. Food Habit, Spatial, and Dietary Niche Overlap of Three Sympatric Insectivorous Bats (Chiroptera) in the West Region of Cameroon. Am. J. BioSci. Bioeng. 2023, 11(5), 55-65. doi: 10.11648/j.bio.20231105.11

    Copy | Download

    AMA Style

    Manfothang Dongmo Ervis, Bakwo Fils Eric-Moise, Manga Mongombe Aaron, Tchuenguem Fohouo Fernand-Nestor. Food Habit, Spatial, and Dietary Niche Overlap of Three Sympatric Insectivorous Bats (Chiroptera) in the West Region of Cameroon. Am J BioSci Bioeng. 2023;11(5):55-65. doi: 10.11648/j.bio.20231105.11

    Copy | Download

  • @article{10.11648/j.bio.20231105.11,
      author = {Manfothang Dongmo Ervis and Bakwo Fils Eric-Moise and Manga Mongombe Aaron and Tchuenguem Fohouo Fernand-Nestor},
      title = {Food Habit, Spatial, and Dietary Niche Overlap of Three Sympatric Insectivorous Bats (Chiroptera) in the West Region of Cameroon},
      journal = {American Journal of Bioscience and Bioengineering},
      volume = {11},
      number = {5},
      pages = {55-65},
      doi = {10.11648/j.bio.20231105.11},
      url = {https://doi.org/10.11648/j.bio.20231105.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.bio.20231105.11},
      abstract = {We studied the diet and the overlap of diet and spatial niches of three common insectivorous bats: Hipposideros fuliginosus, Rhinolophus landeri and Chaerephon pumilus in the West region of Cameroon from December 2016 to November 2018. Bats were captured using standard mist netting and fecal analyses carried out. Five fecal pellets were randomly chosen from each bat, moisten with water and separated into fine pieces and observed under a binocular microscope. The result reveals that these species fed mainly on coleopterans, lepidopterans and hemipterans. Diet of these bats exhibited a high level of overlap, with the highest value between C. pumilus and R. landeri, with an overlap percentage of 76.6%, followed by H. fuliginosus and R. landeri, with an overlap percentage of 69.2%. The lowest overlap, with a percentage of 28.2% is between C. pumilus and H. fuliginosus. Also, communities of the R. landeri are spatially distant from those of C. pumilus and H. fuliginosus with the lowest spatial overlap between the pair C. pumilus and R. landeri followed by R. landeri and H. fuliginosus. Our results show that these three species consume the similar types of insect prey, but they take different proportions. Moreover, resource partitioning by these insectivorous bats is likely to occur in accordance with the abundance and seasonal availability of insect prey. Furthermore, our results provide baseline data for several insectivorous bats in Cameroon whose dietary and spatial co-existence has never been studied.},
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Food Habit, Spatial, and Dietary Niche Overlap of Three Sympatric Insectivorous Bats (Chiroptera) in the West Region of Cameroon
    AU  - Manfothang Dongmo Ervis
    AU  - Bakwo Fils Eric-Moise
    AU  - Manga Mongombe Aaron
    AU  - Tchuenguem Fohouo Fernand-Nestor
    Y1  - 2023/09/27
    PY  - 2023
    N1  - https://doi.org/10.11648/j.bio.20231105.11
    DO  - 10.11648/j.bio.20231105.11
    T2  - American Journal of Bioscience and Bioengineering
    JF  - American Journal of Bioscience and Bioengineering
    JO  - American Journal of Bioscience and Bioengineering
    SP  - 55
    EP  - 65
    PB  - Science Publishing Group
    SN  - 2328-5893
    UR  - https://doi.org/10.11648/j.bio.20231105.11
    AB  - We studied the diet and the overlap of diet and spatial niches of three common insectivorous bats: Hipposideros fuliginosus, Rhinolophus landeri and Chaerephon pumilus in the West region of Cameroon from December 2016 to November 2018. Bats were captured using standard mist netting and fecal analyses carried out. Five fecal pellets were randomly chosen from each bat, moisten with water and separated into fine pieces and observed under a binocular microscope. The result reveals that these species fed mainly on coleopterans, lepidopterans and hemipterans. Diet of these bats exhibited a high level of overlap, with the highest value between C. pumilus and R. landeri, with an overlap percentage of 76.6%, followed by H. fuliginosus and R. landeri, with an overlap percentage of 69.2%. The lowest overlap, with a percentage of 28.2% is between C. pumilus and H. fuliginosus. Also, communities of the R. landeri are spatially distant from those of C. pumilus and H. fuliginosus with the lowest spatial overlap between the pair C. pumilus and R. landeri followed by R. landeri and H. fuliginosus. Our results show that these three species consume the similar types of insect prey, but they take different proportions. Moreover, resource partitioning by these insectivorous bats is likely to occur in accordance with the abundance and seasonal availability of insect prey. Furthermore, our results provide baseline data for several insectivorous bats in Cameroon whose dietary and spatial co-existence has never been studied.
    VL  - 11
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Forestry, Faculty of Agronomie and Agricultural Science (FASA), University of Dschang, Dschang, Cameroon

  • Department of Biological Sciences, Faculty of Sciences, University of Maroua, Maroua, Cameroon

  • Department of Biological Sciences, Faculty of Sciences, University of Maroua, Maroua, Cameroon

  • Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, Ngaoundéré, Cameroon

  • Section