Accurate prediction of molecular structures and properties is vital for chemistry; materials science, and drug discovery, yet classical electronic-structure methods often fail for strongly correlated systems, large basis sets, and complex potential-energy landscapes. Quantum technology encompassing quantum computing, quantum machine learning, and hybrid quantum classical strategies offers a fundamentally new paradigm by encoding many-electron wave functions directly on qubits and exploiting superposition and entanglement to explore exponentially large Hilbert spaces. This review synthesizes recent algorithmic and hardware advances relevant to molecular modelling, including the Variational Quantum Eigensolver (VQE), Quantum Phase Estimation (QPE), quantum unitary coupled-cluster (q-UCC) families, equation-of-motion and subspace methods for excited states, tensor-network hybrids, and quantum kernel and variational QML approaches. We examine noise-aware hybrid workflows, error-mitigation techniques, symmetry-preserving ansätze, and operator-factorization methods that reduce measurement and gate overhead. Representative applications are discussed: ground- and excited-state energy prediction, potential-energy surface mapping, geometry and transition-state optimization, spectroscopic property estimation (IR, UV–Vis, NMR, EPR), and reaction-dynamics scenarios where non-adiabatic effects and conical intersections dominate. Resource estimates and scaling analyses clarify current NISQ limitations qubit counts, circuit depth, shot complexity and delineate the roadmap to fault-tolerant QPE for chemical accuracy. We compare quantum approaches with classical baselines (DFT, CCSD (T), multireference methods), identifying domains where quantum methods already show promise (strong correlation, multi-reference dissociation, spin-state ordering) and where classical methods remain competitive. Finally, we highlight near-term industrial opportunities in drug design, catalysis, CO2 capture, and energy materials, and outline critical research directions: algorithmic reductions in measurement/precision cost, hardware improvements in fidelity and connectivity, scalable ansatz design, and integrated software stacks for reproducible hybrid simulations. Together, these developments indicate that while practical, large-scale quantum advantage for general chemistry remains future work, quantum technologies are rapidly maturing into powerful tools for targeted molecular problems that are intractable with existing classical techniques.
| Published in | American Journal of Physical Chemistry (Volume 14, Issue 4) |
| DOI | 10.11648/j.ajpc.20251404.14 |
| Page(s) | 125-146 |
| Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
| Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Quantum Computing, Molecular Structure Prediction, Electronic Structure Calculations, Molecular Property Prediction, Quantum Simulation, Computational Chemistry
| [1] | Norman, P.; Dreuw, A. Simulating X-ray spectroscopies and calculating core-excited states of molecules. Chemical Reviews 2018, 118, 7208-7248. |
| [2] | Szabo, A.; Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. McGraw-Hill, New York, 1989. |
| [3] | Olsen, J.; Jørgensen, P. Linear and nonlinear response functions for an exact state and for an MCSCF state. Journal of Chemical Physics 1985, 82, 3235-3264. |
| [4] | Koch, H.; Harrison, R. J. Analytical calculation of full configuration interaction response properties. Journal of Chemical Physics 1991, 95, 7479-7490. |
| [5] | Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Insights into current limitations of density functional theory. Science 2008, 321, 792-794. |
| [6] | Kent, P. R. C.; Kotliar, G. Toward a predictive theory of correlated materials. Science 2018, 361, 348-354. |
| [7] | Feynman, R. P. Simulating physics with computers. International Journal of Theoretical Physics 1982, 21, 467-488. |
| [8] | Lloyd, S. Universal quantum simulators. Science 1996, 273, 1073-1078. |
| [9] | Abrams, D. S.; Lloyd, S. Simulation of many-body Fermi systems on a universal quantum computer. Physical Review Letters 1997, 79, 2586-2589. |
| [10] | Abrams, D. S.; Lloyd, S. Quantum algorithm providing exponential speedup for eigenvalue problems. Physical Review Letters 1999, 83, 5162-5165. |
| [11] | Ortiz, G.; Gubernatis, J. E.; Knill, E.; Laflamme, R. Quantum algorithms for fermionic simulations. Physical Review A 2001, 64, 022319. |
| [12] | Somma, R.; Ortiz, G.; Gubernatis, J. E.; Knill, E.; Laflamme, R. Simulating physical phenomena by quantum networks. Physical Review A 2002, 65, 042323. |
| [13] | Georgescu, I. M.; Ashhab, S.; Nori, F. Quantum simulation. Reviews of Modern Physics 2014, 86, 153-185. |
| [14] | Cao, Y.; Romero, J.; Olson, J. P.; et al. Quantum chemistry in the age of quantum computing. Chemical Reviews 2019, 119, 10856-10915. |
| [15] | McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S. C.; Yuan, X. Quantum computational chemistry. Reviews of Modern Physics 2020, 92, 015003. |
| [16] | Kitaev, A. Y. Quantum measurements and the Abelian stabilizer problem. arXiv:quant-ph/9511026. |
| [17] | Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M. Simulated quantum computation of molecular energies. Science 2005, 309, 1704-1707. |
| [18] | Kassal, I.; Aspuru-Guzik, A. Quantum algorithm for molecular properties and geometry optimization. Journal of Chemical Physics 2009, 131, 224102. |
| [19] | O’Brien, T. E.; et al. Calculating energy derivatives for quantum chemistry on a quantum computer. npj Quantum Information 2019, 5, 113. |
| [20] | Lanyon, B. P.; et al. Towards quantum chemistry on a quantum computer. Nature Chemistry 2010, 2, 106-111. |
| [21] | Du, J.; et al. NMR implementation of a molecular hydrogen quantum simulation. Physical Review Letters 2010, 104, 030502. |
| [22] | Hong-Gao; Imamura, S.; Kasagi, A.; Yoshida, E. Distributed implementation of full configuration interaction. Journal of Chemical Theory and Computation 2024, 20, 1185-1199. |
| [23] | Wang, Y.; et al. Quantum simulation of helium hydride cation. ACS Nano 2015, 9, 7769-7774. |
| [24] | Dobrautz, W.; et al. Spin-pure stochastic CASSCF via GUGA-FCIQMC. Journal of Chemical Theory and Computation 2021, 17, 5684-5703. |
| [25] | Liebermann, N.; Ghanem, K.; Alavi, A. Importance-sampling FCIQMC. Journal of Chemical Physics 2022, 157, 124111. |
| [26] | O’Malley, P. J. J.; et al. Scalable quantum simulation of molecular energies. Physical Review X 2016, 6, 031007. |
| [27] | Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M.-H.; Zhou, X.-Q.; Love, P. J.; Aspuru-Guzik, A.; O’Brien, J. L. A variational eigenvalue solver on a photonic quantum processor. Nature Communications 2014, 5, 4213. |
| [28] | McClean, J. R.; et al. Theory of variational hybrid algorithms. New Journal of Physics 2016, 18, 023023. |
| [29] | Robledo-Moreno, J.; et al. Chemistry beyond exact diagonalization. Science Advances 2025, 11, eadu9991. |
| [30] | Kim, Y.; Krylov, A. I. Spin-flip methods. Journal of Physical Chemistry A 2023, 127, 6552-6566. |
| [31] | Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. |
| [32] | Shen, Y.; Zhang, X.; Zhang, S.; Zhang, J.-N.; Yung, M.-H.; Kim, K. Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure. Physical Review A 2017, 95, 020501(R). |
| [33] | Kandala, A.; Mezzacapo, A.; Temme, K.; Takita, M.; Brink, M.; Chow, J. M.; Gambetta, J. M. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 2017, 549, 242-246. |
| [34] | Győrffy, W.; Bartlett, R. J.; Greer, J. C. Monte Carlo configuration interaction predictions for electronic spectra compared to full CI calculations. Journal of Chemical Physics 2008, 129, 064103. |
| [35] | Hempel, C.; Maier, C.; Romero, J.; McClean, J.; Monz, T.; Shen, H.; Jurcevic, P.; Lanyon, B. P.; Love, P. J.; Babbush, R.; et al. Quantum chemistry calculations on a trapped-ion quantum simulator. Physical Review X 2018, 8, 031022. |
| [36] | Booth, G. H.; Thom, A. J. W.; Alavi, A. Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space. Journal of Chemical Physics 2009, 131, 054106. |
| [37] | Cleland, D.; Booth, G. H.; Alavi, A. Study of electron affinities using the initiator FCIQMC method. Journal of Chemical Physics 2011, 134, 024112. |
| [38] | Chiesa, A.; Tacchino, F.; Grossi, M.; Santini, P.; Tavernelli, I.; Gerace, D.; Carretta, S. Quantum hardware simulating four-dimensional inelastic neutron scattering. Nature Physics 2019, 15, 455-459. |
| [39] | Francis, A.; Freericks, J. K.; Kemper, A. F. Quantum computation of magnon spectra. Physical Review B 2020, 101, 014411. |
| [40] | Blunt, N. S.; Smart, S. D.; Kersten, J. A. F.; Spencer, J. S.; Booth, G. H.; Alavi, A. Semi-stochastic full configuration interaction quantum Monte Carlo. Journal of Chemical Physics 2015, 142, 184107. |
| [41] | Blunt, N. S. Efficient perturbative correction to initiator FCIQMC. Journal of Chemical Physics 2018, 148, 221101. |
| [42] | Ghanem, K.; Guther, K.; Alavi, A. Adaptive shift method in FCIQMC. Journal of Chemical Physics 2020, 153, 224115. |
| [43] | Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li, Z.; Liu, J.; McClain, J. D.; Sayfutyarova, E. R.; Sharma, S.; Wouters, S.; Chan, G. K.-L. PySCF: the Python-based simulations of chemistry framework. Journal of Chemical Physics 2018, 153, 024109. |
| [44] | Norman, P.; Bishop, D. M.; Jensen, H. J. A.; Oddershede, J. Nonlinear response theory with relaxation: First-order hyperpolarizability. Journal of Chemical Physics 2005, 123, 194103. |
| [45] | Mukamel, S. Multidimensional femtosecond correlation spectroscopies. Annual Review of Physical Chemistry 2000, 51, 691-729. |
| [46] | Harrow, A. W.; Hassidim, A.; Lloyd, S. Quantum algorithm for linear systems of equations. Physical Review Letters 2009, 103, 150502. |
| [47] | Ambainis, A. Variable time amplitude amplification and faster quantum algorithms. arXiv:1010.4458. |
| [48] | Clader, B. D.; Jacobs, B. C.; Sprouse, C. R. Preconditioned quantum linear system algorithm. Physical Review Letters 2013, 110, 250504. |
| [49] | Childs, A. M.; Kothari, R.; Somma, R. D. Quantum algorithm for systems of linear equations. SIAM Journal on Computing 2017, 46, 1920-1950. |
| [50] | Subaşı, Y.; Somma, R. D.; Orsucci, D. Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing. Physical Review Letters 2019, 122, 060504. |
| [51] | Xu, X.; Sun, J.; Endo, S.; Li, Y.; Benjamin, S. C.; Yuan, X. Variational algorithms for linear algebra. arXiv:1909.03898. |
| [52] | Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N. S.; Bogdanov, N. A.; Booth, G. H.; Chen, Z.; Cui, Z.-H.; et al. Recent developments in the PySCF program package. Journal of Chemical Physics 2020, 153, 024109. |
| [53] | Bravo-Prieto, C.; LaRose, R.; Cerezo, M.; Subasi, Y.; Cincio, L.; Coles, P. J. Variational quantum linear solver. arXiv:1909.05820. |
| [54] | Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM: Philadelphia, 2003. |
| [55] | Aaronson, S. Read the fine print. Nature Physics 2015, 11, 291-293. |
| [56] | Childs, A. M.; Wiebe, N. Hamiltonian simulation using linear combinations of unitary operations. Quantum Information & Computation 2012, 12, 901-924. |
| [57] | Berry, D. W.; Childs, A. M.; Cleve, R.; Kothari, R.; Somma, R. D. Simulating Hamiltonian dynamics with a truncated Taylor series. Physical Review Letters 2015, 114, 090502. |
| [58] | Johnson, E. R.; Becke, A. D. A post-Hartree-Fock model of intermolecular interactions. Journal of Chemical Physics 2006, 124, 174104. |
| [59] | Blunt, N. S.; Camps, J.; Crawford, O.; Izsák, R.; Leontica, S.; Mirani, A.; Moylett, A. E.; Scivier, S. A.; Sünderhauf, C.; Schopf, P.; Taylor, J. M.; Holzmann, N. Perspective on quantum computing for drug discovery. Journal of Chemical Theory and Computation 2022, 18, 7001-7023. |
APA Style
Krishna, R. H. (2025). Prediction of Molecular Structures and Properties by Using Quantum Technology. American Journal of Physical Chemistry, 14(4), 125-146. https://doi.org/10.11648/j.ajpc.20251404.14
ACS Style
Krishna, R. H. Prediction of Molecular Structures and Properties by Using Quantum Technology. Am. J. Phys. Chem. 2025, 14(4), 125-146. doi: 10.11648/j.ajpc.20251404.14
@article{10.11648/j.ajpc.20251404.14,
author = {Ravuri Hema Krishna},
title = {Prediction of Molecular Structures and Properties by Using Quantum Technology},
journal = {American Journal of Physical Chemistry},
volume = {14},
number = {4},
pages = {125-146},
doi = {10.11648/j.ajpc.20251404.14},
url = {https://doi.org/10.11648/j.ajpc.20251404.14},
eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpc.20251404.14},
abstract = {Accurate prediction of molecular structures and properties is vital for chemistry; materials science, and drug discovery, yet classical electronic-structure methods often fail for strongly correlated systems, large basis sets, and complex potential-energy landscapes. Quantum technology encompassing quantum computing, quantum machine learning, and hybrid quantum classical strategies offers a fundamentally new paradigm by encoding many-electron wave functions directly on qubits and exploiting superposition and entanglement to explore exponentially large Hilbert spaces. This review synthesizes recent algorithmic and hardware advances relevant to molecular modelling, including the Variational Quantum Eigensolver (VQE), Quantum Phase Estimation (QPE), quantum unitary coupled-cluster (q-UCC) families, equation-of-motion and subspace methods for excited states, tensor-network hybrids, and quantum kernel and variational QML approaches. We examine noise-aware hybrid workflows, error-mitigation techniques, symmetry-preserving ansätze, and operator-factorization methods that reduce measurement and gate overhead. Representative applications are discussed: ground- and excited-state energy prediction, potential-energy surface mapping, geometry and transition-state optimization, spectroscopic property estimation (IR, UV–Vis, NMR, EPR), and reaction-dynamics scenarios where non-adiabatic effects and conical intersections dominate. Resource estimates and scaling analyses clarify current NISQ limitations qubit counts, circuit depth, shot complexity and delineate the roadmap to fault-tolerant QPE for chemical accuracy. We compare quantum approaches with classical baselines (DFT, CCSD (T), multireference methods), identifying domains where quantum methods already show promise (strong correlation, multi-reference dissociation, spin-state ordering) and where classical methods remain competitive. Finally, we highlight near-term industrial opportunities in drug design, catalysis, CO2 capture, and energy materials, and outline critical research directions: algorithmic reductions in measurement/precision cost, hardware improvements in fidelity and connectivity, scalable ansatz design, and integrated software stacks for reproducible hybrid simulations. Together, these developments indicate that while practical, large-scale quantum advantage for general chemistry remains future work, quantum technologies are rapidly maturing into powerful tools for targeted molecular problems that are intractable with existing classical techniques.},
year = {2025}
}
TY - JOUR T1 - Prediction of Molecular Structures and Properties by Using Quantum Technology AU - Ravuri Hema Krishna Y1 - 2025/12/31 PY - 2025 N1 - https://doi.org/10.11648/j.ajpc.20251404.14 DO - 10.11648/j.ajpc.20251404.14 T2 - American Journal of Physical Chemistry JF - American Journal of Physical Chemistry JO - American Journal of Physical Chemistry SP - 125 EP - 146 PB - Science Publishing Group SN - 2327-2449 UR - https://doi.org/10.11648/j.ajpc.20251404.14 AB - Accurate prediction of molecular structures and properties is vital for chemistry; materials science, and drug discovery, yet classical electronic-structure methods often fail for strongly correlated systems, large basis sets, and complex potential-energy landscapes. Quantum technology encompassing quantum computing, quantum machine learning, and hybrid quantum classical strategies offers a fundamentally new paradigm by encoding many-electron wave functions directly on qubits and exploiting superposition and entanglement to explore exponentially large Hilbert spaces. This review synthesizes recent algorithmic and hardware advances relevant to molecular modelling, including the Variational Quantum Eigensolver (VQE), Quantum Phase Estimation (QPE), quantum unitary coupled-cluster (q-UCC) families, equation-of-motion and subspace methods for excited states, tensor-network hybrids, and quantum kernel and variational QML approaches. We examine noise-aware hybrid workflows, error-mitigation techniques, symmetry-preserving ansätze, and operator-factorization methods that reduce measurement and gate overhead. Representative applications are discussed: ground- and excited-state energy prediction, potential-energy surface mapping, geometry and transition-state optimization, spectroscopic property estimation (IR, UV–Vis, NMR, EPR), and reaction-dynamics scenarios where non-adiabatic effects and conical intersections dominate. Resource estimates and scaling analyses clarify current NISQ limitations qubit counts, circuit depth, shot complexity and delineate the roadmap to fault-tolerant QPE for chemical accuracy. We compare quantum approaches with classical baselines (DFT, CCSD (T), multireference methods), identifying domains where quantum methods already show promise (strong correlation, multi-reference dissociation, spin-state ordering) and where classical methods remain competitive. Finally, we highlight near-term industrial opportunities in drug design, catalysis, CO2 capture, and energy materials, and outline critical research directions: algorithmic reductions in measurement/precision cost, hardware improvements in fidelity and connectivity, scalable ansatz design, and integrated software stacks for reproducible hybrid simulations. Together, these developments indicate that while practical, large-scale quantum advantage for general chemistry remains future work, quantum technologies are rapidly maturing into powerful tools for targeted molecular problems that are intractable with existing classical techniques. VL - 14 IS - 4 ER -