American Journal of Optics and Photonics

Research Article | | Peer-Reviewed |

Cooling and Trapping of Fröhlich Polaron and Observation of Plasma Formation in Magnetic Field

Received: Jul. 22, 2023    Accepted: Aug. 14, 2023    Published: Nov. 11, 2023
Views:       Downloads:

Share

Abstract

Due to their physical properties and potential importance to the understanding of the electron mobility in a wide variety of materials, polarons are currently the subject of intensive research. Using one of the world most powerfull trapping entity, we investigated the influence of surrounding environment on the dynamic of Fröhlich polaron with the help of semiclassical approach under rotating wave approximation (RWA), in the consideration that we deal with a two-level-system (TLS). Both the frequency of the trap and the bandgap value between energy levels of the system particles dictate the resulting phenomenon. Trapping of Fröhlich polarons with magnetic field conducts to complete population transfer from excited state to ground state with the possibility of the formation of Bose-Einstein Condensates (BEC) at bot low bandgap energy values and important value magnetic field frequency. Fundamentally different to polaritons, nomatter the breaking down of Pauli Exclusion Principle (BDPEP), the magnetic trapping of quasiparticles Fröhlich polarons conducts to plasma formation when both the bandgap value of energy levels and the magnetic field frequency are very important. Detailed analysis of the resulted phenomenon will open a new perspctives toward understanding the dynamic of cooled and trapped Fröhlich polarons.

DOI 10.11648/j.ajop.20231101.12
Published in American Journal of Optics and Photonics ( Volume 11, Issue 1, March 2023 )
Page(s) 10-19
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Polarons, Magnetic Field, Trapping, Semiclassical Approach, Bose-Einstein Condensates, Plasma Formation

References
[1] Klein, E. La physique quantique et ses interpretations. SER, 5, Tome 394, (2001): 629-639. DOI: 10.3917/etu.945.0629.
[2] Benioff, P. The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J Stat Phys 22, (1980): 563-591. DOI: https://doi.org/10.1007/BF01011339.
[3] Feynman, R. P. Simulating Physics with computers. Int. J. Theor. Phys. 21, (1982): 467-488. DOI: https://doi.org/10.1007/BF02650179.
[4] Shor, P. W. Algorithms for quantum computation: discrete logaritms and factoring. 35th Symposium on the Foundations of Computer Science, New Mexico, 20-22 November 1994, (1994): 124–134. DOI: http://dx.doi.org/10.1109/SFCS.1994.365700.
[5] Strunz, W. T., Haake, F., Braun, D. Universality of decoherence for macroscopic quantum superpositions. Physical Review A, 67 (2), 022101, (2003): 1-13. DOI: 10.1103/PhysRevA.67.022101.
[6] Burkard, G., Loss, D., DiVincenzo, D. P. Coupled quantum dots as quantum gates, Phys. Rev. B 59, (1999): 2070-2078. DOI: https://doi.org/10.1103/PhysRevB.59.2070.
[7] Leroyer, Y., Sénizergues, G. Introduction à l’information quantique. ENSEIRB-MATMECA. Polycopié du Calcul quantique. (2016). 110 Pges.
[8] Chuang, I. L., Yamamoto, Y. A Simple Quantum Computer. Phys. Rev. A, 52, (1995): 3489-3496. DOI: https://doi.org/10.1103/PhysRevA.52.3489.
[9] Deutsch, D. Quantum computational networks, Proc. R. Soc. Lond. A, 425, (1989): 73-90. DOI: 10.1098/rspa.1989.0099.
[10] Steane, A. Quantum computing. Rep. Prog. Phys 61, (1998): 117-173. DOI: http://dx.doi.org/10.1088/0034-4885/61/2/002.
[11] Ekert, A., Jozsa, R. Quantum computation and Shor's factoring algorithm. Rev. Mod. Phys 68, (1996): 733-753. DOI: https://doi.org/10.1103/RevModPhys.68.733.
[12] Spiller, T. P. Quantum information processing: cryptography, computation and teleportation. Proc. IEEE, 84 (12), (1996): 1719-1746. DOI: 10.1109/5.546339.
[13] Benioff, P. Models of quantum turing machines. Fortschr. Phys, 46 (4-5), (1998): 423-441. DOI: https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<423:AID-PROP423>3.0.CO;2-G.
[14] Kielpinski, D., Monroe, C., Wineland, D.J. Architecture for a large-scale ion-trap quantum computer. Nature 417, (2002): 709-711. DOI: https://doi.org/10.1038/nature00784.
[15] Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, (1995): R2493-R2496. DOI: https://doi.org/10.1103/PhysRevA.52. R2493.
[16] Roszak, K., Filip, R., Novotny, T. Decoherence control by quantum decoherence itself. Sci. Rep 5, 9796 (2015): 1-10. DOI: https://doi.org/10.1038/srep09796.
[17] Ban, M. Photon-echo technique for reducing the decoherence of a quantum bit. Journal of Modern Optics, 11 (45), (1998): 2315-2325. DOI: https://doi.org/10.1080/09500349808231241.
[18] Calderbank, A. R., Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54 (2), (1996). 1098-1105. DOI: 10.1103/physreva.54.1098.
[19] Laflamme, R., Miquel, C., Paz, J. P., Zurek, W. H. Perfect quantum error correcting code. Phys. Rev. Lett, 77 (1). (1996): 198-201. DOI: 10.1103/PhysRevLett.77.198.
[20] Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett, 77 (5), (1996): 793-797. DOI: 10.1103/physrevlett.77.793.
[21] Chuang, I. L., Yamamoto, Y. Creation of a persistent quantum bit using error correction. Phys. Rev. A, 55 (1), (1997): 114-127. DOI: 10.1103/PhysRevA.55.114.
[22] Knill, E., Laflamme, R. Theory of quantum error-correcting codes. Phys. Rev. A, 55 (2). (1997): 900-911. DOI: 10.1103/PhysRevA.55.900.
[23] Braunstein, S. L., Smolin, J. A. Perfect quantum-error-correction coding in 24 laser pulses. Phys. Rev. A, 55 (2), (1997): 945-950. DOI: https://doi.org/10.1103/PhysRevA.55.945.
[24] Fotue, A. J., Djomou, D. R.-J., Kenfack, S. C., Fobasso, M. F. C., Fai, L. C. Stability and decoherence of optical bipolaron in symmetric quantum dot. Eur. Phys. J. Plus: (2020): 1-14. DOI: 10.1140/epjp/s13360-020-00835-5.
[25] Nguenang, P., Jipdi, N. M., Louodop, P., Tchoffo, M., Fai, L. C., Cerdeira, H. A. Quantum interferometry for different energy Landscape in a tunable Josephson-junction circuit. Journal of Applied Mathematics and Physics, 8, (2020): 2569-2600. DOI: 10.4236/jamp.2020.81192.
[26] Kenfack, S. C., Ekengoue, C. M., Fotue, A. J., Fobasso, F. C., Bawe Jr, G. N., Fai, L. C. Laser cooling and trapping of polariton. Computational Condensed Matter 11, (2017): 47-54. DOI: http://dx.doi.org/10.1016/j.cocom.2017.05.001.
[27] Ekengoue, C. M., Kenfack, S. C., Fotue, A. J., FObasso, M. F. C., Bawe Jr, G. N., Fai, L. C. Decoherence of cooled and trapped polariton under magnetic field. Computational Condensed Matter 14, (2018): 106-113. DOI: https://doi.org/10.1016/j.cocom.2018.01.012
[28] Brandt, H. E. Qubit devices and the issue of quantum decoherence. Progress in Quantum Electronics, 22 (5-6), (1998): 257-370. DOI: https://doi.org/10.1016/S0079-6727(99)00003-8.
[29] Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M., Wineland, D. J. (1995). Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett, 75 (25), (1995): 4714-4717. DOI: 10.1103/physrevlett.75.4714.
[30] Devreese, J. T. Fröhlich polarons from 3D to 0D: concepts and recent developments (Part I), 2005, P.186.
[31] Fujii, K. Introduction to the Rotating Wave Approximation (RWA): Two coherent oscillations. Journal of Modern Physics, 8, (2017): 2042-2058. DOI: 10.4236/jmp.2017.812124.
[32] Walls, D. F., Milburn, G. J. Quantum Optics, Springer-Verlag, Berlin, (1994). ISBN: 978-3-540-28574-8.
[33] Oliver, W. D., Yu, Y., Lee, J. C., Berggren, K. K., Levitov, L. S., Orlando, T. P. Mach-Zehnder interferometry in a strongly driven superconducting qubit. Science, 9 (310). (2005): 1653-1657. DOI: 10.1126/science.1119678.
[34] Wilson, C. M., Duty, T., Persson, F., Sandberg, M., Johansson, G., Delsing, P. Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett. 98, 257003, (2007): 1-4. DOI: 10.1103/PhysRevLett.98.257003.
[35] Izmalkov, A., Van der Ploeg, S. H. W., Shevchenko, S. N., Grajcar, M., Il’ichev, E., Hübner, U., Omelyanchouk, A. N., Meyer, H.-G. Consistency of ground state and spectroscopic measurements on flux qubits. Phys. Rev. Lett. 101 (1). 017003, (2008): 1-4. DOI: 10.1103/PhysRevLett.101.017003.
[36] Sillanpää, M., Lehtinen, T., Paila, A., Makhlin, Y., Hakonen, P. Continuous-time monitoring of Landau Zener interference in a cooper-pair Box. Phys; Rev.lett.96, 187002, (2006): 1-4. DOI: https://doi.org/10.1103/PhysRevLett.96.187.
[37] Matthews, C. F. J., Poulios, K., Meinecke, J. D. A., Politi, A., Peruzzo, A., Ismail, N., Wörhoff, K., Thompson, M. G., O’Brien, J. L. (2013). Sci. Rep. 1539 (3), 1–6.
[38] Kenfack-Sadem, C., Ekengoue, C. M., Danga, J. E., Fotue, A. J., Fobasso, M. F. C., Fai, L. C. Lasser control of polariton using Landau-Zener-Stückelberg interferometry theory. The Eueopean Physical Journal Plus 135, 815, (2020): 1-24. DOI: https://doi.org/10.1140/epjp/s13360-020-00790-1.
[39] Langmuir, I. Oscillations in ionized gases. Proceedings of the National Academy of Science, 14 (8), (1928): 627-637. DOI: 10.1073/pnas.14.8.627.
[40] Kenmoe, M. B., Mkam Tchouobiap, S. E., Danga, J. E., Kenfack Sadem, C., Fai, L. C. Lie algrebras for some specific dissipative Landau-Zener problems. Physics Letters A, 379 (7), (2015): 635-642. DOI: https://doi.org/10.1016/j.physleta.2014.12.032.
Cite This Article
  • APA Style

    Adamou, N., Clautaire, M. E., Aurelien, K. J., Christian, K. S., Jervé, F. A., et al. (2023). Cooling and Trapping of Fröhlich Polaron and Observation of Plasma Formation in Magnetic Field. American Journal of Optics and Photonics, 11(1), 10-19. https://doi.org/10.11648/j.ajop.20231101.12

    Copy | Download

    ACS Style

    Adamou, N.; Clautaire, M. E.; Aurelien, K. J.; Christian, K. S.; Jervé, F. A., et al. Cooling and Trapping of Fröhlich Polaron and Observation of Plasma Formation in Magnetic Field. Am. J. Opt. Photonics 2023, 11(1), 10-19. doi: 10.11648/j.ajop.20231101.12

    Copy | Download

    AMA Style

    Adamou N, Clautaire ME, Aurelien KJ, Christian KS, Jervé FA, et al. Cooling and Trapping of Fröhlich Polaron and Observation of Plasma Formation in Magnetic Field. Am J Opt Photonics. 2023;11(1):10-19. doi: 10.11648/j.ajop.20231101.12

    Copy | Download

  • @article{10.11648/j.ajop.20231101.12,
      author = {Njutapmvoui Adamou and Mwebi Ekengoue Clautaire and Kenfack Jiotsa Aurelien and Kenfack Sadem Christian and Fotue Alain Jervé and Lukong Cornelius Fai},
      title = {Cooling and Trapping of Fröhlich Polaron and Observation of Plasma Formation in Magnetic Field},
      journal = {American Journal of Optics and Photonics},
      volume = {11},
      number = {1},
      pages = {10-19},
      doi = {10.11648/j.ajop.20231101.12},
      url = {https://doi.org/10.11648/j.ajop.20231101.12},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajop.20231101.12},
      abstract = {Due to their physical properties and potential importance to the understanding of the electron mobility in a wide variety of materials, polarons are currently the subject of intensive research. Using one of the world most powerfull trapping entity, we investigated the influence of surrounding environment on the dynamic of Fröhlich polaron with the help of semiclassical approach under rotating wave approximation (RWA), in the consideration that we deal with a two-level-system (TLS). Both the frequency of the trap and the bandgap value between energy levels of the system particles dictate the resulting phenomenon. Trapping of Fröhlich polarons with magnetic field conducts to complete population transfer from excited state to ground state with the possibility of the formation of Bose-Einstein Condensates (BEC) at bot low bandgap energy values and important value magnetic field frequency. Fundamentally different to polaritons, nomatter the breaking down of Pauli Exclusion Principle (BDPEP), the magnetic trapping of quasiparticles Fröhlich polarons conducts to plasma formation when both the bandgap value of energy levels and the magnetic field frequency are very important. Detailed analysis of the resulted phenomenon will open a new perspctives toward understanding the dynamic of cooled and trapped Fröhlich polarons.
    },
     year = {2023}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Cooling and Trapping of Fröhlich Polaron and Observation of Plasma Formation in Magnetic Field
    AU  - Njutapmvoui Adamou
    AU  - Mwebi Ekengoue Clautaire
    AU  - Kenfack Jiotsa Aurelien
    AU  - Kenfack Sadem Christian
    AU  - Fotue Alain Jervé
    AU  - Lukong Cornelius Fai
    Y1  - 2023/11/11
    PY  - 2023
    N1  - https://doi.org/10.11648/j.ajop.20231101.12
    DO  - 10.11648/j.ajop.20231101.12
    T2  - American Journal of Optics and Photonics
    JF  - American Journal of Optics and Photonics
    JO  - American Journal of Optics and Photonics
    SP  - 10
    EP  - 19
    PB  - Science Publishing Group
    SN  - 2330-8494
    UR  - https://doi.org/10.11648/j.ajop.20231101.12
    AB  - Due to their physical properties and potential importance to the understanding of the electron mobility in a wide variety of materials, polarons are currently the subject of intensive research. Using one of the world most powerfull trapping entity, we investigated the influence of surrounding environment on the dynamic of Fröhlich polaron with the help of semiclassical approach under rotating wave approximation (RWA), in the consideration that we deal with a two-level-system (TLS). Both the frequency of the trap and the bandgap value between energy levels of the system particles dictate the resulting phenomenon. Trapping of Fröhlich polarons with magnetic field conducts to complete population transfer from excited state to ground state with the possibility of the formation of Bose-Einstein Condensates (BEC) at bot low bandgap energy values and important value magnetic field frequency. Fundamentally different to polaritons, nomatter the breaking down of Pauli Exclusion Principle (BDPEP), the magnetic trapping of quasiparticles Fröhlich polarons conducts to plasma formation when both the bandgap value of energy levels and the magnetic field frequency are very important. Detailed analysis of the resulted phenomenon will open a new perspctives toward understanding the dynamic of cooled and trapped Fröhlich polarons.
    
    VL  - 11
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Faculty of Sciences, University of Dschang (UDs), Dschang, Cameroon

  • Division of Scientific Research and Innovations, African Scientific Association for Innovative and Entrepreneurship (ASAIE), Dschang, Cameroon; Faculty of Engineering and Technology (FET), University of Buea (UB), Buea, Cameroon

  • Faculty of Sciences, University of Yaounde I (UYI), Yaounde, Cameroon

  • Faculty of Sciences, University of Dschang (UDs), Dschang, Cameroon; Division of Scientific Research and Innovations, African Scientific Association for Innovative and Entrepreneurship (ASAIE), Dschang, Cameroon

  • Faculty of Sciences, University of Dschang (UDs), Dschang, Cameroon; Division of Scientific Research and Innovations, African Scientific Association for Innovative and Entrepreneurship (ASAIE), Dschang, Cameroon

  • Faculty of Sciences, University of Dschang (UDs), Dschang, Cameroon; Division of Scientific Research and Innovations, African Scientific Association for Innovative and Entrepreneurship (ASAIE), Dschang, Cameroon

  • Section