A closed transcritical power cycle using an ethanol and 2-Naphthaldehyde solution as its working fluid provides a format for using Carnot efficiency to define conjectural second law limits on positive excess enthalpy of solution reactions and heat energy conversion. Changes in the solvent’s density with resultant changes in solubility between the closed cycle’s low and high temperatures establish an internal heat transfer where heat input near the cycle’s T2 to satisfy the excess enthalpy reaction is transferred by retrograde solubility to near the cycle’s T1 before it affects gas expansion. The effect of this heat transfer causes this closed cycle’s Q efficiency to exceed the Carnot T efficiency of its input heat.
Published in | American Journal of Modern Physics (Volume 14, Issue 1) |
DOI | 10.11648/j.ajmp.20251401.12 |
Page(s) | 25-28 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Second Law, Solution Thermodynamics, Solubility, Ethanol, Closed Power Cycle
Temp. K | Carnot Eff. | Input kJ | Work |
---|---|---|---|
480.00 | 0.00 | 118.49 | 0.00 |
510.85 | .0506 | 101.00 | 5.11 |
526.41 | .0787 | 101.00 | 7.95 |
536.91 | .0967 | 101.00 | 9.76 |
540.60 | .1028 | 27.5 + 40 | 2.83 |
553.22 | .1230 | 46 + 40 | 5.66 |
31.31 |
Temp. K | Pressure (MPa) | Density (kg/m3) | Int. Eng. (kJ/kg) | Enthalpy (kJ/kg) | Entropy (kJ/kg-K) | Quality (kg) |
---|---|---|---|---|---|---|
(D)485.00 | 3.7288 | 523.90 | 497.27 | 504.39 | 1.1872 | .00000 |
(A)490.47 | 9.2 | 552.11 | 497.86 | 514.53 | 1.1872 | |
(B)556.63 | 9.2 | 173.14 | 957.36 | 1010.50 | 2.1266 | |
(C)486.92 | 3.7288 | 63.72 | 901.49 | 960.01 | 2.1266 | |
(E)510.85 | 9.2 | 493.53 | 595.89 | 614.53 | 1.3868 | |
526.41 | 9.2 | 413.10 | 692.26 | 714.53 | 1.5795 | |
536.91 | 9.2 | 314.57 | 785.28 | 814.53 | 1.7675 | |
540.60 | 9.2 | 272.05 | 825.71 | 859.53 | 1.8510 | |
553.22 | 9.2 | 185.12 | 935.80 | 985.50 | 2.0816 |
[1] | D. Van Den Einde, Physics Essays 36(2) 190-193 (2023). |
[2] | F. Zhang, Y. Tang, L. Wang, L. Xu, and G. Liu, J. Chem. Engineering Data, 60, 2502, (2015). |
[3] | J. Yang, B. Hou, J. Huang, X. Li, B. Tian, N. Wang, J. Bi, and H. Hao, J. Molecular Liquids, 283, 713 (2019). |
[4] | J. Chrastil, J. Physical Chemistry, 86, 3016 (1982). |
[5] | Y. Bai, H. Yang, C. Quan, and C. Guo, J. Chem. Eng. Data, 52, 2074 (2007). |
[6] | D. Fernandez, G. Hefter, and R. Frenandez-Prini, J. Chem. Thermodynamics, 33, 1309 (2001). |
[7] | M. Sauceau, J.-J. Letourneau, B. Freiss, D. Richon, and J. Fages, J. Supercrit. Fluids 31, 133 (2004). |
[8] | Z. Haung, X.-W. Yang, G.-B. Sun, S.-W. Song, and S. Kawi, J. Supercrit. Fluids 36, 91 (2005). |
[9] | C. Yi Kong, K. Sone, T. Sako, T. Funazukuri, and S. Kagei, Fluid Phase Equilib. 302, 347 (2011). |
[10] | D. J. Miller, S. B. Hawthorne, and A. A. Clifford, J. Supercrit. Fluids 10, 57 (1997). |
[11] | E. Marceca and R. Fernandez-Prini, J. Chem. Thermodynamics, 25, 237 (1993). |
[12] | T. Kraska, K. Leonhard, and G. Schneider, J. Supercrit. Fluids 23, 209 (2002). |
[13] | Z. Suoqi, W. Renan, and Y. Guanghua, J. Supercrit. Fluids 8, 15 (1995). |
[14] | G.-T. Liu and K. Nagahama, J. Supercrit. Fluids 9, 152 (1996). |
[15] | G. Anitescu and L. L. Tavlarides, J. Supercrit. Fluids 14, 197 (1999). |
[16] | V. Pauchon, Z. Cisse, M. Chavret, and J. Jose, J. Supercrit. Fluids 32, 115 (2004). |
[17] | M. Hojjati, Y. Yamini, M. Khajeh, and A. Vatanara, J. Supercrit. Fluids 41, 187 (2007). |
[18] | S. Kazemi, V. Belandria, N. Janssen, D. Richon, C. Peters, and M. Kroon, J. Supercrit. Fluids 72, 320 (2012). |
[19] | Z. Huang, G. Sun, S. Kawi, R. Wen, and S. Song, Fluid Phase Equilib. 238, 26 (2005). |
[20] | F. Trabelsi, K. Abaroudi, and F. Recasens, J. Supercrit. Fluids 14, 151 (1999). |
[21] | J. Ma, X. Huang, N. Wang, X. Li, Y. Bao, T. Wang, and H. Hao, J. Molecular Liquids, 309, 113004 (2020). |
[22] | D. Van Den Einde, Physics Essays 37(3) 174-176 (2024). |
[23] | REFPROP, Version 10, National Institute of Standards and Technology, Boulder, Colorado. |
APA Style
Einde, D. V. D. (2025). Carnot Efficiency Used to Demonstrate a Second Law Fault in Defining Limits on Heat Energy Conversion. American Journal of Modern Physics, 14(1), 25-28. https://doi.org/10.11648/j.ajmp.20251401.12
ACS Style
Einde, D. V. D. Carnot Efficiency Used to Demonstrate a Second Law Fault in Defining Limits on Heat Energy Conversion. Am. J. Mod. Phys. 2025, 14(1), 25-28. doi: 10.11648/j.ajmp.20251401.12
@article{10.11648/j.ajmp.20251401.12, author = {David Van Den Einde}, title = {Carnot Efficiency Used to Demonstrate a Second Law Fault in Defining Limits on Heat Energy Conversion }, journal = {American Journal of Modern Physics}, volume = {14}, number = {1}, pages = {25-28}, doi = {10.11648/j.ajmp.20251401.12}, url = {https://doi.org/10.11648/j.ajmp.20251401.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20251401.12}, abstract = {A closed transcritical power cycle using an ethanol and 2-Naphthaldehyde solution as its working fluid provides a format for using Carnot efficiency to define conjectural second law limits on positive excess enthalpy of solution reactions and heat energy conversion. Changes in the solvent’s density with resultant changes in solubility between the closed cycle’s low and high temperatures establish an internal heat transfer where heat input near the cycle’s T2 to satisfy the excess enthalpy reaction is transferred by retrograde solubility to near the cycle’s T1 before it affects gas expansion. The effect of this heat transfer causes this closed cycle’s Q efficiency to exceed the Carnot T efficiency of its input heat. }, year = {2025} }
TY - JOUR T1 - Carnot Efficiency Used to Demonstrate a Second Law Fault in Defining Limits on Heat Energy Conversion AU - David Van Den Einde Y1 - 2025/02/10 PY - 2025 N1 - https://doi.org/10.11648/j.ajmp.20251401.12 DO - 10.11648/j.ajmp.20251401.12 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 25 EP - 28 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20251401.12 AB - A closed transcritical power cycle using an ethanol and 2-Naphthaldehyde solution as its working fluid provides a format for using Carnot efficiency to define conjectural second law limits on positive excess enthalpy of solution reactions and heat energy conversion. Changes in the solvent’s density with resultant changes in solubility between the closed cycle’s low and high temperatures establish an internal heat transfer where heat input near the cycle’s T2 to satisfy the excess enthalpy reaction is transferred by retrograde solubility to near the cycle’s T1 before it affects gas expansion. The effect of this heat transfer causes this closed cycle’s Q efficiency to exceed the Carnot T efficiency of its input heat. VL - 14 IS - 1 ER -