Aminopyridines are among the classes of heterocyclic compounds that have been extensively studied in the last few decades owing to their interesting biological activities. They exist in three isomeric forms: 2-aminopyridine, 3-aminopyridine and 4-aminopyridine. The diversity in their pharmacological activities has attracted the attention of many researchers to explore the reasons for their wide potential. This study examines recent advances related to the efficient procedure for synthesizing different types of aminopyridine derivatives, its coordination site with metals and biological activities using systematic literature review and content analysis. Other important concepts of aminopyridines discussed are basicity, electric hindrance as related to percentage yield of isomeric forms and spectra updates on the characterization of aminopyridines. The findings from this study also reveal the array of solvents used for purification processes; ideas on isomers that have not been used in the synthesis of aminopyridine derivatives and their respective biological activities. The significance of this study is on the various synthetic methods revealed, which may be helpful to the development of newer compounds with aminopyridines moieties that could offer high bioactivity and lesser toxicity.
Published in | American Journal of Heterocyclic Chemistry (Volume 7, Issue 2) |
DOI | 10.11648/j.ajhc.20210702.11 |
Page(s) | 11-25 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2021. Published by Science Publishing Group |
Syntheses, Bioactivity, Aminopyridines, Basicity, Electric Hindrance
[1] | Choudhury, R., Panda, S., Singh, D. V. (2012). Emergence and dissemination of antibiotic resistance: a global problem. Indian journal of medical microbiology, 30 (4), 384. |
[2] | Morehead, M. S., Scarbrough, C. (2018). Emergence of global antibiotic resistance. Prim Care, 45 (3), 467-484. |
[3] | Marinescu, M. (2017). 2-Aminopyridine–A classic and trendy pharmacophore. Int. J. Pharm. Bio. Sci, 8 (2), 338-355. |
[4] | Donlawson, C. Nweneka, D. O. Orie, K. J. & Okah, R. (2020). Synthesis and Bioactivity of 1-((2-Carbamoylguanidino) (furan-2-ylmethyl) urea. American Journal of Analytical Chemistry, 11 (7), 280-288. https://doi.org/10.4236/ajac.2020.117022. |
[5] | Vamos M. & Cosford, N. D. (2014). 2-Aminopyridines via Reaction of Pyridine N-Oxides and Activated Isocyanides. The Journal of organic chemistry 79 (5): 2274-80. doi.org/10.1021/jo402693s. |
[6] | Morrison, R. T. Boyd, R. N. & Bhattacharjee, J. K. (1992). Organic Chemistry (7th edition). Prentice-Hall, India: Pearson Education Inc. |
[7] | Lakrout, S. K'tir, H. Amira, A. Berredjem, M. & Aouf, N. E. (2014). A simple and eco-sustainable method for the sulfonylation of amines under microwave-assisted solvent-free conditions. RSC Advances 4 (31): 16027-16032. doi.org/10.1039/C4RA01346H. |
[8] | Asif, M. (2017). A mini review: biological significances of nitrogen hetero atom containing heterocyclic compounds. International Journal of Bioorganic Chemistry 2 (3): 146-152. doi: 10.11648/j.ijbc. |
[9] | Kodimuthali, A. Mungara, A. Prasunamba, P. L. & Pal, M. (2010). A simple synthesis of aminopyridines: Use of amides as amine source. Journal of the Brazilian Chemical Society 21 (8): 1439-45. doi.org/10.1590/S0103-50532010000800005. |
[10] | Ahmed, N. M. Nofal, S. & Awad S. M. (2020). Synthesis, Molecular Modelling and Biological Evaluation of Novel Pyrimidine Derivatives as Anti-inflammatory Agents. Journal of Pharmaceutical Research International 15: 49-67. doi.org/10.9734/jpri/2020/v32i2230771. |
[11] | Fier, P. S. Kim, S. & Cohen, R. D. (2020). A Multifunctional Reagent Designed for the Site-Selective Amination of Pyridines. Journal of the American Chemical Society 142 (19): 8614-8. doi.org/10.1021/jacs.0c03537. |
[12] | Pang, J. H. Kaga, A. Roediger, S. Lin, M. H. & Chiba, S. (2019). Revisiting the Chichibabin Reaction: C2 Amination of Pyridines with a NaH-Iodide Composite. Asian Journal of Organic Chemistry 8: 1058-60. doi: 10.1002/ajoc.201900. |
[13] | Liu, C. Luo, J. Xu, L. & Huo, Z. (2013). Synthesis of 2-substituted pyridines from pyridine N-oxides. Arkivoc 1: 154-74. doi.org/10.3998/ark.5550190.0014.105. |
[14] | Shneine, J. K. Qassem, D. Z. Mahmoud, S. S. (2017). Synthesis, characterization and antibacterial activity of some aminoacid derivatives. International Journal of ChemTech Research 10 (3): 604–612. |
[15] | Hocquet, A. Tohier, J. & Fournier, J. (1994). Synthesis and Spectroscopic Study of Plant Growth Regulators Phenylpyridylureas: An" Agrorganic" Undergraduate Laboratory Experiment. Journal of Chemical Education 71 (12): 1092. doi.org/10.1021/ed071p1092. |
[16] | Rehman, H. Abdul, M. Qadir, H. A. Shad, N. & Khan, Z. I. (2017). One Pot Synthesis of Some Novel Sulfonamide Derivatives Containing-NH2 Group: Spectral Characterization and Biological Evaluation. Medicinal Chemistry 7: 252-6. doi: 10.4172/2161-0444.1000465. |
[17] | Zheng, D. Li, Y. An, Y. & Wu, (2014). Aminosulfonylation of aromatic amines, sulfur dioxide and hydrazines. Chemical Communications 50 (64): 8886-8. doi.org/10.1039/C4CC03032J. |
[18] | William, A. (2008) Pharmaceutical Manufacturing Encyclopaedia (3rd edition) William Andrew Publishing. |
[19] | Environmental Protection Agency (2008). Registration of Copper – containing alloy product. http://www.trimcohardware.com/wp-content/uploads/2015/07/EPA-Copper-Registration.pdf (Accessed July 6, 2020). |
[20] | King, A. M. Menke, N. B. Katz, K. D. & Pizon, A. F. (2012). 4-aminopyridine toxicity: a case report and review of the literature. Journal of Medical Toxicology; 8 (3): 314-21. doi 10.1007/s13181-012-0248-9. |
[21] | Raczyńska, E. D. Gal, J. F. & Maria, P. C. (2016). Enhanced basicity of push–pull nitrogen bases in the gas phase. Chemical Reviews 116 (22): 13454-511. doi.org/10.1021/acs.chemrev.6b00224. |
[22] | Trochimowicz, H. J., Kennedy Jr, G. L., & Krivanek, N. D. (1994). Heterocyclic and miscellaneous nitrogen compounds. Patty's Industrial Hygiene and Toxicology, 2 (Part E), 3295-3304. |
[23] | Smith. M. (2010). Organic Synthesis. New York: John Wiley & Sons, Inc. |
[24] | Castillo, R. R. Cordoba, M. Izquierdo, M. L. & Alvarez-Builla, J. (2009). Pyridinium N-heteroarylaminides: synthesis of N-heteroarylpolyamines. Tetrahedron; 65 (47): 9782-90. doi: 10.1016/j.tet.2009.09.079. |
[25] | Lee, J. D. (2013) Concise (Inorganic Chemistry (4th edition). Mapo Ibadan; learning solutions specialty publications limited. |
[26] | Clayden, J. Greeves, N. Warren, S. Wothers, P. (2012). Organic Chemistry 7. Oxford University Press. |
[27] | Ali, S. A Jabbi, A. H. & Mohsie, R. A. (2016). Synthesis of Some Sulfa Drug Derivatives as Antibacterial Agents. International Journal of Current Microbiology and Applied Sciences; 5 (5): 75-83. doi.org/10.20546/ijcmas.2016.505.008. |
[28] | Falih, M. S. Jinzeel, N. A. Abood, N. K. & Askar, F. W. (2013). Synthesis and Characterization of New 2-amino pyridine Derivatives. Iraqi National Journal of Chemistry 52: 453-65. |
[29] | Sánchez-Viesca, F. Gómez Gómez, M. R. Berros, M. (2011). Electric hindrance and precursor complexes in the regiochemistry of some nitrations. Journal of Chemical Education 88 (7): 944-6. doi.org/10.1021/ed900030s. |
[30] | Sánchez-Viesca, F. & Gómez, R. (2015). Electric hindrance and dipole moments in 2-aminopyridine nitration. American Journal of Chemistry 5 (1): 19-22. doi: 10.5923/j.chemistry.20150501.03. |
[31] | Toche, R. B. Kazi, M. A. Ghotekar, B. K. Bagul, S. M. Tantak, C. D. & Jachak, M. N. (2009). Fluorescence properties of donor acceptor chromophores on newly synthesized pyridine-3-carbonitriles. Journal of fluorescence 19 (6): 1119. doi.org/10.1007/s10895-009-0511-x. |
[32] | Nigade, G. Chavan P. & Deodhar, M. (2012). Synthesis and analgesic activity of new pyridine-based heterocyclic derivatives. Medicinal Chemistry Research 21 (1): 27-37. doi.org/10.1007/s00044-010-9489-9. |
[33] | Abraham, D. J. (2003) (Ed.). Burger’s Medicinal Chemistry & Drug Discovery. Hoboken, NJ: John Wiley and Sons, Inc. |
[34] | Dueke-Eze, C. U. Fasina, T. M. & Mphahlele, M. J. (2013). Synthesis, characterization and solvent effects on the electronic absorption spectra of aminopyridine Schiff bases. Asian Journal of Chemistry 25: 8505-8508. doi.org/10.14233/ajchem.2013.14805. |
[35] | Altaf, A. A. Shahzad, A. Gul, Z. Rasool, N. Badshah, A. Lal, B. & Khan, E. (2015). A review on the medicinal importance of pyridine derivatives. Journal of Drug Design and Medicinal Chemistry 1 (1): 1-11. doi: 10.11648/j.jddmc.20150101.11. |
[36] | Alsughayer, A. Elassar, A. Z. Mustafa, S. & Al Sagheer, F. (2011). Synthesis, structure analysis and antibacterial activity of new potent sulfonamide derivatives. Journal of Biomaterials and Nanobiotechnology. 2 (02): 143 -149. doi: 10.4236/jbnb.2011.22018. |
[37] | Vinita, G. Sanchita S. & Gupta, Y. K. (2016). Synthesis and Antimicrobial Activity of some Salicylaldehyde Schiff bases of 2-aminopyridine. Research Journal of Chemical Sciences 3 (9): 26-29. |
[38] | Parmar, K. C. Vora, J. J. & Vasava, S. B. (2014). Synthesis, spectral and microbial studies of some novel Schiff base derivatives of 2 – aminopyridine. Journal of Chemical and Pharmaceutical Research 6 (4): 1259-1263. |
[39] | Salgado-Zamora, H. Campos, M. Jiménez, R. & Cervantes, H. (2004). An unexpected condensation reaction involving 2-aminopyridine, DMF and barbituric acids. Revista de la Sociedad Química de México 48 (4): 246-9. |
[40] | Dueke-Eze, C. U. Fasina, T. M. & Idika, N. (2011). Synthesis, electronic spectra and inhibitory study of some salicylaldehyde Schiff bases of 2-aminopyridine. African Journal of Pure and Applied Chemistry 5 (2): 13-18. |
[41] | Abdul Qadir, M. Ahmed, M. Aslam, H. Waseem S.& Shafiq, M. I. (2015). Amidine sulfonamides and benzene sulfonamides: Synthesis and their biological evaluation. Journal of Chemistry 2015. doi.org/10.1155/2015/524056. |
[42] | Sobola A. O. & Watkins, G. M. (2018). Synthesis, characterization and biological study of Cu (II) complexes of aminopyridine and (aminomethyl) pyridine Schiff bases. Journal of the Serbian Chemical Society 83 (7-8): 809-19. doi.org/10.2298/JSC170913002S. |
[43] | Sharma, G. & Narula, A. K. (2015). Synthesis and optoelectronic properties of three Eu (III)-dipicolinate complexes based on α-picolinic acid, 2-aminopyridine and 2-hydroxypyridine as secondary ligands. Journal of Materials Science: Materials in Electronics 26 (2): 1009-17. doi.org/10.1007/s10854-014-2497-7. |
[44] | Mei, L. & Ming, T. H. (2008). Synthesis and Crystal Structure of Mononuclear Bis (2-aminopyridine) zinc Complex. Asian Journal of Chemistry 20 (8): 6589-6593. |
[45] | Vidya, U. G. (2016). Synthesis, characterization and Biological studies of new Cu (II) complex derived from 9-Anthraldelyde and 2–Aminopyridine. Research Journal of Recent Sciences 5 (7): 41-43. |
[46] | Hossain, M. M. Bashar, M. A. Khan, M. N. Roy, P. K. & Mannan, M. A. (2018). Physical and Spectral Characterization of Ni (II), Cu (II), Co (II) and Cd (II) Complexes with Schiff Base of Salicylaldehyde and 2-Aminopyridine Towards Potential Microbial Application. American Journal of Applied Chemistry 6 (4): 147-55. doi.org/10.11648/j.ajac.20180604.13. |
[47] | Malik, A. Goyat, G. Vikas, K. Verma K. K. & Garg, S. (2018). Coordination of Tellurium (IV) with Schiff Base Derived from o-Vanillin and 3-Aminopyridine. International Journal of Chemical Sciences 16 (1): 249. |
[48] | Dojer, B. Pevec, A. Belaj, F. & Kristl, M. (2015). Two New Zinc (II) Acetate with 3- and 4- Aminopyridine; Syntheses and Structural Properties. Acta Chimica Slovenica 62 (2): 312-8. Doi: 10,17344/acsi/2014.1111. |
[49] | Nagashree, S. Mallu, P. Mallesha, L. & Bindya, S. (2013). Synthesis, Characterization, and Antimicrobial Activity of Methyl-2-aminopyridine-4-carboxylate Derivatives. Journal of Chemistry 2013. doi.org/10.1155/2013/312961. |
[50] | Jisha, M. J. Isac Sobana raj, C. (2017) Synthesis and characterization of Schiff base complexes of Cu, Ni (II), Co (II) complexes of Schiff base derived from furan 3- carboxaldehyde and 3- amino pyridine. International journal of Science and Research Publication 7 (10). |
[51] | Nandi, J & Sankar, V. K. (2012). Synthesis and docking studies of Schiff bases derived from 4-aminopyridine. Journal of Pharmaceutical and Scientific Innovation 1 (5): 9-11. |
[52] | Singh, S. K. Sinha S. K. & Shirsat, M. K. (2018). Design, Synthesis and Evaluation of 4-Aminopyridine Analogues as Cholinesterase Inhibitors for Management of Alzheimer’s Diseases. Indian Journal of Pharmaceutical Education and Research 52 (4): 644-654. doi: 10.5530/ijper.52.4.75. |
[53] | Tawfiq, M. T. (2016). Identification of new heterocyclic compounds synthesized from 4-aminopyridine and evaluation their antibacterial effect. World Journal of Experimental Bioscience 4 (2): 98-107. |
[54] | Dhaveethu, K. Ramachandramoorthy, T. & Thirunavukkarasu, K. (2013). Microwave-assisted synthesis of mixed ligand complexes of Zn (II), Cd (II) and Hg (II) derived from 4-aminopyridine and nitrite ion: Spectral, thermal and biological investigations. Journal of the Korean Chemical Society 57 (3): 341-51. doi.org/10.5012/jkcs.2013.57.3.341. |
[55] | Igwe, C. N. & Okoro, U. C. (2014). Synthesis, characterization, and evaluation for antibacterial and antifungal activities of n-heteroaryl substituted benzene sulphonamides. Organic Chemistry International 2014. doi.org/10.1155/2014/419518. |
[56] | Srivastava, S. Sen, M. R. Kumar, A. & Anupurba, S. (2005). Neonatal listeriosis. The Indian Journal of Paediatrics 72 (12): 1059–1060. doi: 10.1007/bf02724415. |
[57] | Gupta, D. Pathak, D. P. Kapoor, G. & Bhutani, R. (2019). A Comprehensive Review on Synthesis and Biological Activity of Schiff Bases. International Research Journal of Pharmacy 10 (5) doi: 10.7897/2230-8407.1005153. |
[58] | Hu, L. Y., Lei, H. J., Du, D., Johnson, T. R., Fedij, V., Kostlan, C. & Welgus, H. (2007). Synthesis and biological evaluation of amino-pyridines as androgen receptor antagonists for stimulating hair growth and reducing sebum production. Bioorganic & medicinal chemistry letters, 17 (20), 5693-5697.doi.org/10.1016/j.bmcl.2007.07.059. |
[59] | Sarabu, R. Berthel, S. J. Kester, R. F. & Tilley, J. W. (2011). Novel glucokinase activators: a patent review (2008–2010). Expert opinion on therapeutic patents 21 (1): 13-33. doi.org/10.1517/13543776.2011.542413. |
[60] | Samadi, A. Marco-Contelles, J. Soriano, E. Álvarez-Pérez, M. Chioua M. (2010). Multipotent drugs with cholinergic and neuroprotective properties for the treatment of Alzheimer and neuronal vascular diseases. I. Synthesis, biological assessment, and molecular modeling of simple and readily available 2-aminopyridine-, and 2-chloropyridine-3, 5-dicarbonitriles. Bioorganic & medicinal chemistry 18 (16): 5861-72. doi.org/10.1016/j.bmc.2010.06.095. |
APA Style
Kingsley John Orie, Remy Ukachukwu Duru, Raphael I-oro Ngochindo. (2021). Syntheses, Complexation and Biological Activity of Aminopyridines: A Mini-Review. American Journal of Heterocyclic Chemistry, 7(2), 11-25. https://doi.org/10.11648/j.ajhc.20210702.11
ACS Style
Kingsley John Orie; Remy Ukachukwu Duru; Raphael I-oro Ngochindo. Syntheses, Complexation and Biological Activity of Aminopyridines: A Mini-Review. Am. J. Heterocycl. Chem. 2021, 7(2), 11-25. doi: 10.11648/j.ajhc.20210702.11
AMA Style
Kingsley John Orie, Remy Ukachukwu Duru, Raphael I-oro Ngochindo. Syntheses, Complexation and Biological Activity of Aminopyridines: A Mini-Review. Am J Heterocycl Chem. 2021;7(2):11-25. doi: 10.11648/j.ajhc.20210702.11
@article{10.11648/j.ajhc.20210702.11, author = {Kingsley John Orie and Remy Ukachukwu Duru and Raphael I-oro Ngochindo}, title = {Syntheses, Complexation and Biological Activity of Aminopyridines: A Mini-Review}, journal = {American Journal of Heterocyclic Chemistry}, volume = {7}, number = {2}, pages = {11-25}, doi = {10.11648/j.ajhc.20210702.11}, url = {https://doi.org/10.11648/j.ajhc.20210702.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajhc.20210702.11}, abstract = {Aminopyridines are among the classes of heterocyclic compounds that have been extensively studied in the last few decades owing to their interesting biological activities. They exist in three isomeric forms: 2-aminopyridine, 3-aminopyridine and 4-aminopyridine. The diversity in their pharmacological activities has attracted the attention of many researchers to explore the reasons for their wide potential. This study examines recent advances related to the efficient procedure for synthesizing different types of aminopyridine derivatives, its coordination site with metals and biological activities using systematic literature review and content analysis. Other important concepts of aminopyridines discussed are basicity, electric hindrance as related to percentage yield of isomeric forms and spectra updates on the characterization of aminopyridines. The findings from this study also reveal the array of solvents used for purification processes; ideas on isomers that have not been used in the synthesis of aminopyridine derivatives and their respective biological activities. The significance of this study is on the various synthetic methods revealed, which may be helpful to the development of newer compounds with aminopyridines moieties that could offer high bioactivity and lesser toxicity.}, year = {2021} }
TY - JOUR T1 - Syntheses, Complexation and Biological Activity of Aminopyridines: A Mini-Review AU - Kingsley John Orie AU - Remy Ukachukwu Duru AU - Raphael I-oro Ngochindo Y1 - 2021/07/09 PY - 2021 N1 - https://doi.org/10.11648/j.ajhc.20210702.11 DO - 10.11648/j.ajhc.20210702.11 T2 - American Journal of Heterocyclic Chemistry JF - American Journal of Heterocyclic Chemistry JO - American Journal of Heterocyclic Chemistry SP - 11 EP - 25 PB - Science Publishing Group SN - 2575-5722 UR - https://doi.org/10.11648/j.ajhc.20210702.11 AB - Aminopyridines are among the classes of heterocyclic compounds that have been extensively studied in the last few decades owing to their interesting biological activities. They exist in three isomeric forms: 2-aminopyridine, 3-aminopyridine and 4-aminopyridine. The diversity in their pharmacological activities has attracted the attention of many researchers to explore the reasons for their wide potential. This study examines recent advances related to the efficient procedure for synthesizing different types of aminopyridine derivatives, its coordination site with metals and biological activities using systematic literature review and content analysis. Other important concepts of aminopyridines discussed are basicity, electric hindrance as related to percentage yield of isomeric forms and spectra updates on the characterization of aminopyridines. The findings from this study also reveal the array of solvents used for purification processes; ideas on isomers that have not been used in the synthesis of aminopyridine derivatives and their respective biological activities. The significance of this study is on the various synthetic methods revealed, which may be helpful to the development of newer compounds with aminopyridines moieties that could offer high bioactivity and lesser toxicity. VL - 7 IS - 2 ER -