| Peer-Reviewed

Co-crystallization of Oxalate Salts of Monoprotonated Amines with a Double Sn-Ph Bond Cleavage

Received: 11 July 2020     Accepted: 27 July 2020     Published: 25 August 2020
Views:       Downloads:
Abstract

Two oxalate compounds [(C4H7N2)3][Sb(C2O4)3] (1) and [(Et3NH)][SnPhCl(C2O4)2] (2), have been isolated and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system, space group P21/c with a=13.3944 (6) Å, b=11.3554 (5) Å, c=16.3314 (7) Å, β=107.206 (1), V=2372.82 (18) Å3 and Z=4. Compound 2 crystallizes in the monoclinic system, space group P21/n with a=8.6903 (4) Å, b=15.3844 (8) Å, c=20.3144 (10) Å, β=100.869 (2), V=2667.2 (2) Å3 and Z=4. The complex-anion [Sb(O2CCO2)3]3- of the compound 1 adopts a distorted pentagonal pyramidal arrangement with monochelating oxalates. The asymmetric unit of 1 consists of three 2-methyl-1H-imidazolium cations, C4H7N2+, three oxalate anions, C2O42-, and one antimony (III) ion, Sb3+. From a supramolecular point of view, in 1 complex-anions are connected by cations through N-H•••(O,O) and N-H•••O hydrogen bonds involving the two oxalates of the basal plane into sheets which are then connected via the remaining oxalate and cations through N-H•••O hydrogen bonds to give rise to a three-dimensional structure. The complex-anion of 2 is comprised of a tin centre linked to a chlorine atom and a phenyl group, and cis-chelated by two oxalates in a distorted octahedral fashion. Each triethylammonium cation is connected to the complex-anion through bifurcated N-H•••(O,O) hydrogen bonds. These interactions lead to a discrete structure. A double Sn-C bond cleavage has occurred during the process of the formation of the compound 2. In both complounds 1 and 2, one cation exhibits some positional disorder.

Published in American Journal of Heterocyclic Chemistry (Volume 6, Issue 2)
DOI 10.11648/j.ajhc.20200602.11
Page(s) 16-23
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2020. Published by Science Publishing Group

Keywords

Oxalate, Antimony (III), Tin(IV), 2-Methylimidazolium, Triethylammonium, Sn-C Cleavage, X-ray Crystal Crystallography

References
[1] Wan, K.-K., Yu, J.-H., Xu, J.-Q. (2019). 4,5-Diamino-1,2-dihydropyridazine-3,6-dione-based layered Zn2+ coordination polymer and sensing properties on 2,4,6-trinitrophenol and Cr2O72-. Journal of Solid State Chemistry, 270, 212-218. doi: 10.1016/j.jssc.2018.11.020.
[2] Zhang, L.-Y., Lu, L.-P., Zhu, M.-L. (2020). Two Cadmium(II) Complexes Constructed by 2-(3-(Pyridin-2-yl)-1H-pyrazol-1-yl)benzoate: Crystal Structures, Luminescent Properties and Hirshfeld Surface Analyses. Journal of Chemical Crystallography, 50, 122-132. doi: 10.1007/s10870-019-00781-w.
[3] Wang, J., Zhong, Y., Bai, C., Guan, Y., Pan, Y., Hu, H.-M. (2020). Series of coordination polymers with multifunctional properties for nitroaromatic compounds and CuII sensing. Journal of Solid State Chemistry, 288, 121381. doi: 10.1016/j.jssc.2020.121381.
[4] Escande, P., Tichit, D., Ducourant, B., Fourcarde, R., Macherpa, G. (1978). Interaction between the lone electronic pair and π bond in a nonsymmetric system: Crystal structure of sodium oxalate-antimony trifluoride (Na2C2O4(SbF3)2). Annale de Chimie (Paris), 3, 117-124. CSD Refcode: SBFOXS.
[5] Coudreau-Ducourant, D., Ducourant, B., Fourcarde, R., Macherpa, G. (1981). New complex of antimony oxide fluoride and oxalate: Crystal structure of (NH4)4H2(C2O4)3(SbOF)2.2H2O. Zeitschrift für Anorganische und Allgemeine Chemie., 476, 229-236. doi: 10.1002/zaac.19814760527.
[6] Udovenko, A. A., Sigula, N. I., Samarets, L. V., Davidovich, R. L. (1981). Crystal structure of ammonium trioxalatotetrefluorodiantimonate(III) dehydrate. Russian Journal of Coordination Chemistry (koordinatsionnaya khimiya), 7, 450-454. CSD Refcode: FLOXSB.
[7] Udovenko, A. A., Sigula, N. I., Davidovich, R. L. (1981). Crystal structure of cesium dioxalatotetrefluorodiantimonate(III) monohydrate. Russian Journal of Coordination Chemistry (koordinatsionnaya khimiya), 7, 1708-1712. CSD Refcode: BAYLUI.
[8] Davidovich, R. L., Zemnukhova, L. A., Udovenko, A. A., Sigula, N. I. (1983). Synthesis and structure of rubidium oxalatofluorodiantimonates(III). Russian Journal of Coordination Chemistry (koordinatsionnaya khimiya), 9, 787-792. CSD Refcodes: CANRIS, CANROY and CANRUE.
[9] Poor, M. C., Russel, D. R. (1971). Crystal structure of the trisoxalatoantimonate(III) ion: Sterically-active lone pair in six-coordination. Journal of the Chemical Society D: Chemical Communications, 18-19. doi: 10.1039/c29710000018.
[10] Song, X., Zhong, G., Xie, Q., Eng, G. (2005). An unexpected Sn–Ph cleavage by mercaptoacetic acid. Inorganic Chemistry Communications, 8 (8), 725-728. doi: 10.1016/j.inoche.2005.05.006.
[11] Chandrasekhar, V., Gopal, K., Sasikumar, P., Thirumoorthi, R. (2005). Organooxotin assemblies from SnC bond cleavage reactions. Coordination Chemistry Reviews, 249 (17-18), 1745-1765. doi: 10.1016/j.ccr.2005.03.028.
[12] Carraher, C. E., Roner, M. R., Frank, J., Slawek, P., Mosca, F., Shahi, K., Moric-Johnson, A., Miller, L. (2019). Organotin Polymers for the Control of Pancreatic Cancer. OBM Hepatology and Gastroenterology, 3 (2): 10. doi: 10.21926/obm.hg.1902019.
[13] Carraher, C. E., Roner, M., Shahi, K., Battin, A., Barot, G., Arnold, T. (2014). Organotin Polymers As Chemotherapeutic Agents: Breast and Pancreatic Cancers. Journal of Polymer Materials, 31 (1), 1-14.
[14] Barot, G., Roner, M. R., Naoshima, Y., Nagao, K., Shahi, K., Carraher, C. E. (2009). Synthesis, Structural Characterization, and Preliminary Biological Characterization of Organotin Polyethers Derived from Hydroquinone and Substituted Hydroquinones. Journal of Inorganic and Organometallic Polymers and Materials, 19 (1), 12-27. doi: 10.1007/s10904-008-9220-1.
[15] Roner, M. R., Shahi, K. R., Barot, G., Battin, A., Carraher, C. E. (2009). Preliminary Results for the Inhibition of Pancreatic Cancer Cells by Organotin Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19 (3), 410-414. doi: 10.1007/s10904-009-9275-7.
[16] Carraher, C., Roner, M., Lynch, M., Moric-Johnson, A., Miller, L., Slawek, P., Mosca, F., Frank, J. (2018). Organotin poly(ester ethers) from salicylic acid and their ability to inhibit human cancer cell lines. Journal of Clinical Research in Oncology, 1 (1), 1-11.
[17] Carraher Jr, C., Roner, M. (2014). Organotin polymers as anticancer and antiviral agents. Journal of Organometallic Chemistry, 751, 67-82. doi: 10.1016/j.jorganchem.2013.05.033
[18] Iqbal, M., Ali, S., Haider, A., Khalid, N. (2017). Therapeutic properties of organotin complexes with reference to their structural and environmental features. Reviews in Inorganic Chemistry, 37 (2), 51.70. doi: 10.1515/revic-2016-0005.
[19] Hussain, S., Ali, S., Shahzadi, S., Riaz, M., Nazir, K., Arshad M. N., Asiri, A. M. (2020). Synthesis, Structural and Biological Studies of Organotin(IV) Complexes with N-(Dithiocarboxy) Sarcosine. Arabian Journal for Science and Engineering, 45, 4785-4795. doi: 10.1007/s13369-020-04496-5.
[20] Hadi, A., Jawad, K., Ahmed, D. S., Yousif, E. (2019). Synthesis and Biological Activities of Organotin (IV) Carboxylates: A Review. Systematic Reviews in Pharmacy, 10 (1), 26-31. doi: 10.5530/srp.2019.1.5.
[21] Javed, F., Sirajuddin, M., Ali, S., Khalid, N., Tahir, M. N., Shah, N. A., Rasheed, Z., Khan, M. R. (2016). Organotin (IV) derivatives of o-isobutyl carbonodithioate: synthesis, spectroscopic characterization, X-ray structure, HOMO/LUMO and in vitro biological activities. Polyhedron, 104, 80-90. doi: 10.1016/j.poly.2015.11.041.
[22] Meneghetti, M. R., Meneghetti S. M. P. (2015). Sn(iv)-based organometallics as catalysts for the production of fatty acid alkyl esters. Catalysis Science & Technology, 5, 765-771. doi: 10.1039/C4CY01535E.
[23] Mao, W., Bao, K., Feng, Y., Wang, Q., Li, J., Fan, Z. (2015). Synthesis, crystal structure, and fungicidal activity of trioriganotin(IV) 1-methyl-1H-imidazole-4-carboxylates. Main Group Metal Chemistry, 38 (1-2), 27-30. doi: 10.1515/mgmc-2014-0040.
[24] Kagan, C. R., Breen, T. L., Kosbar, L. L. (2001). Pattering organic-inorganic thin-film transistors using microcontact printed templates. Applied Physics Letters, 79 (21), 3536-3538. doi: 10.1063/1.1420576
[25] Yamada, T., Sadakiyo, M., Kitagawa, H. (2009). High Proton Conductivity of One-Dimensional Ferrous Oxalate Dihydrate. Journal of the American Chemical Society, 131 (9), 3144-3145. doi: 10.1021/ja808681m.
[26] Tang, L., Park, J., Kim, H.-J., Kim, Y., Kim, S. J., Chin, J., Kim, K. M. (2008). Tight Binding and Fluorescent Sensing of Oxalate in Water. Journal of the American Chemical Society, 130 (38), 12606-12607. doi: 10.1021/ja804753n.
[27] Zhang, B., Baker, P. J., Zhang, Y., Wang, D., Wang, Z., Su, S., Zhu, D., Pratt, F. L. (2018). Quantum Spin Liquid from a Three-Dimensional Copper-Oxalate Framework. Journal of the American Chemical Society, 140 (1), 122-125. doi: 10.1021/jacs.7b11179.
[28] Clemente-Leon, M., Coronado, E., Marti-Gastaldo, C., Romero, F. M. (2011). Multifunctionality in hybrid magnetic materials based on bimetallic oxalate complexes. Chemical Society Reviews, 40, 473-497. doi: 10.1039/C0CS00111B.
[29] Yamada, M. G., Fujita, H., Oshikawa, M. (2017). Designing Kitaev Spin Liquids in Metal-Organic Frameworks. Physical Review Letters, 119 (5), 057202. doi: 10.1103/PhysRevLett.119.057202.
[30] Gueye, O., Qamar, H., Diop, L., Diop, C. A., Russo, U. (1993). A new synthetic route for mono- and poly-tin(IV) oxalate adducts: IR and Mössbauer study. Polyhedron, 12 (10), 1245-1249. doi: 10.1016/S0277-5387(00)88218-2.
[31] Diop, L., Mahieu, B., Mahon, M. F., Molloy, K. C., Okio, K. Y. A. (2003). Crystallographic report: Bis(triphenyltin) oxalate. Applied Organometellic Chemistry, 17 (11), 881-882. doi: 10.1002/aoc.536.
[32] Sow, Y., Diop, L., Kociock-Köhn, G., Molloy, K. C. (2010). X-ray crystal structure of (nPr2NH2)2C2O4.SnCl4. Main Group Metal Chemistry, 33 (4-5), 205-208. doi: 10.1515/MGMC.2010.33.4-5.205.
[33] Sarr, M., Diasse-Sarr, A., Diallo, W., Plasseraud, L., Cattey, H. (2013). Bis(cyclo­hexyl­ammonium) tetra­chlorido­(oxalato)stannate(IV). Acta Crystallographica Section E, 69 (8), m473-m474. doi: 10.1107/S1600536813019284.
[34] Diop, M. B., Diop, L., Plasseraud, L., Maris, T. (2015). Crystal structure of 2-methyl-1H-imidazol-3-ium aquatrichlorido(oxalato-κ2O,O’)stannate(IV). Acta Crystallographica Section E, 71 (5), 520-522. doi: 10.1107/S2056989015005988.
[35] Diop, M. B., Diop, L., Plasseraud, L., Cattey, H. (2016). Triorganotin carboxylates – synthesis and crystal structure of 2-methyl-1H-imidazol-3-ium catena-O,O′-oxalatotriphenylstannate. Main Group Metal Chemistry, 39 (3-4), 119-123. doi: 10.1515/mgmc-2016-0016.
[36] Apex3, Crystallographic Software, Suite, Bruker AXS Inc., Madison, Wisconsin (USA) 2015.
[37] Saint (version 8.34A-2013), Area Detector Integration Software, Bruker AXS Inc., Madison, Wisconsin (USA), 2013.
[38] Krause, L., Herbst-Irmer, R., Sheldrick, G. M., Stalke, D. (2015). Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Journal of Applied Crystalloraphy, 48 (1), 3-10. doi: 10.1107/S1600576714022985.
[39] Sheldrick, G. M. (2015). SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, 71 (1), 3-8. doi: 10.1107/S2053273314026370.
[40] Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 71 (1), 3-8. doi: 10.1107/S2053229614024218.
[41] Spek, A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D, 65 (2), 148-155. doi: 10.1107/S090744490804362X.
[42] Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. (2008). Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41 (2), 466-470. doi: 10.1107/S0021889807067908.
[43] Kaduk, J. A., Toft, M. A., Golab, J. T. (2010). Crystal structure of antimony oxalate hydroxide, Sb(C2O4)OH. Powder Diffraction, 25 (1), 19-24. doi: 10.1154/1.3308616.
[44] Diop, M. B., Diop, L., Plasseraud, L., Maris, T. (2016). Crystal structure of bis(2-methyl-1H-imidazol-3-ium) dihydroxidobis(oxalato-κ2O1,O2) stannate(IV) monohydrate. Acta Crystallographica Section E, 72 (3), 355-357. doi: 10.1107/S2056989016002061.
[45] Gueye, N., Diop, L., Stoeckli-Evans, H. (2014). Tetra­kis(di­propyl­ammonium) tetra­kis(oxa­lato-κ2O1,O2)stannate(IV) mono­hydrate: a complex with an eight-coordinate SnIV atom. Acta Crystallographica Section E, 70 (2), m49-m50. doi: 10.1107/S160053681303496X.
[46] B., Sarr, Diop, C. A. K., Sidibe, M., Rousselin, Y. (2018). Crystal structure of bis­(diisopropylammonium) cis-diiodido­bis­(oxolato-κ2O1,O2)stannate(IV). Acta Crystallographica Section E, 74 (4), 502-504. doi: 10.1107/S2056989018003602.
[47] B., Sarr, Mbaye, A., Diop, C. A. K., Sidibe, M., Rousselin, Y. (2019). Synthesis, structure determination and characterization by UV–Vis and IR spectroscopy of bis­(diiso­propyl­ammonium) cis-di­chlorido­bis(oxolato-κ2O1,O2)stannate(IV). Acta Crystallographica Section E, 75 (6), 742-745. doi: 10.1107/S2056989019006030.
[48] Gueye, N., Diop, L., Molloy, K. C., Kociok-Köhn, G. (2010). Bis(dicyclo­hexyl­ammonium) μ-oxalato-κ4O1,O2: O1′,O2′-bis­ [aqua­(oxolato-κ2O1,O2)diphenyl­stannate(IV)], Acta Crystallographica Section E, 66 (12), m1645-m1646. doi: 10.1107/S1600536810046738.
Cite This Article
  • APA Style

    Mouhamadou Birame Diop, Gorgui Awa Seck, Modou Sarr, Libasse Diop, Allen G. Oliver. (2020). Co-crystallization of Oxalate Salts of Monoprotonated Amines with a Double Sn-Ph Bond Cleavage. American Journal of Heterocyclic Chemistry, 6(2), 16-23. https://doi.org/10.11648/j.ajhc.20200602.11

    Copy | Download

    ACS Style

    Mouhamadou Birame Diop; Gorgui Awa Seck; Modou Sarr; Libasse Diop; Allen G. Oliver. Co-crystallization of Oxalate Salts of Monoprotonated Amines with a Double Sn-Ph Bond Cleavage. Am. J. Heterocycl. Chem. 2020, 6(2), 16-23. doi: 10.11648/j.ajhc.20200602.11

    Copy | Download

    AMA Style

    Mouhamadou Birame Diop, Gorgui Awa Seck, Modou Sarr, Libasse Diop, Allen G. Oliver. Co-crystallization of Oxalate Salts of Monoprotonated Amines with a Double Sn-Ph Bond Cleavage. Am J Heterocycl Chem. 2020;6(2):16-23. doi: 10.11648/j.ajhc.20200602.11

    Copy | Download

  • @article{10.11648/j.ajhc.20200602.11,
      author = {Mouhamadou Birame Diop and Gorgui Awa Seck and Modou Sarr and Libasse Diop and Allen G. Oliver},
      title = {Co-crystallization of Oxalate Salts of Monoprotonated Amines with a Double Sn-Ph Bond Cleavage},
      journal = {American Journal of Heterocyclic Chemistry},
      volume = {6},
      number = {2},
      pages = {16-23},
      doi = {10.11648/j.ajhc.20200602.11},
      url = {https://doi.org/10.11648/j.ajhc.20200602.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajhc.20200602.11},
      abstract = {Two oxalate compounds [(C4H7N2)3][Sb(C2O4)3] (1) and [(Et3NH)][SnPhCl(C2O4)2] (2), have been isolated and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system, space group P21/c with a=13.3944 (6) Å, b=11.3554 (5) Å, c=16.3314 (7) Å, β=107.206 (1), V=2372.82 (18) Å3 and Z=4. Compound 2 crystallizes in the monoclinic system, space group P21/n with a=8.6903 (4) Å, b=15.3844 (8) Å, c=20.3144 (10) Å, β=100.869 (2), V=2667.2 (2) Å3 and Z=4. The complex-anion [Sb(O2CCO2)3]3- of the compound 1 adopts a distorted pentagonal pyramidal arrangement with monochelating oxalates. The asymmetric unit of 1 consists of three 2-methyl-1H-imidazolium cations, C4H7N2+, three oxalate anions, C2O42-, and one antimony (III) ion, Sb3+. From a supramolecular point of view, in 1 complex-anions are connected by cations through N-H•••(O,O) and N-H•••O hydrogen bonds involving the two oxalates of the basal plane into sheets which are then connected via the remaining oxalate and cations through N-H•••O hydrogen bonds to give rise to a three-dimensional structure. The complex-anion of 2 is comprised of a tin centre linked to a chlorine atom and a phenyl group, and cis-chelated by two oxalates in a distorted octahedral fashion. Each triethylammonium cation is connected to the complex-anion through bifurcated N-H•••(O,O) hydrogen bonds. These interactions lead to a discrete structure. A double Sn-C bond cleavage has occurred during the process of the formation of the compound 2. In both complounds 1 and 2, one cation exhibits some positional disorder.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Co-crystallization of Oxalate Salts of Monoprotonated Amines with a Double Sn-Ph Bond Cleavage
    AU  - Mouhamadou Birame Diop
    AU  - Gorgui Awa Seck
    AU  - Modou Sarr
    AU  - Libasse Diop
    AU  - Allen G. Oliver
    Y1  - 2020/08/25
    PY  - 2020
    N1  - https://doi.org/10.11648/j.ajhc.20200602.11
    DO  - 10.11648/j.ajhc.20200602.11
    T2  - American Journal of Heterocyclic Chemistry
    JF  - American Journal of Heterocyclic Chemistry
    JO  - American Journal of Heterocyclic Chemistry
    SP  - 16
    EP  - 23
    PB  - Science Publishing Group
    SN  - 2575-5722
    UR  - https://doi.org/10.11648/j.ajhc.20200602.11
    AB  - Two oxalate compounds [(C4H7N2)3][Sb(C2O4)3] (1) and [(Et3NH)][SnPhCl(C2O4)2] (2), have been isolated and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system, space group P21/c with a=13.3944 (6) Å, b=11.3554 (5) Å, c=16.3314 (7) Å, β=107.206 (1), V=2372.82 (18) Å3 and Z=4. Compound 2 crystallizes in the monoclinic system, space group P21/n with a=8.6903 (4) Å, b=15.3844 (8) Å, c=20.3144 (10) Å, β=100.869 (2), V=2667.2 (2) Å3 and Z=4. The complex-anion [Sb(O2CCO2)3]3- of the compound 1 adopts a distorted pentagonal pyramidal arrangement with monochelating oxalates. The asymmetric unit of 1 consists of three 2-methyl-1H-imidazolium cations, C4H7N2+, three oxalate anions, C2O42-, and one antimony (III) ion, Sb3+. From a supramolecular point of view, in 1 complex-anions are connected by cations through N-H•••(O,O) and N-H•••O hydrogen bonds involving the two oxalates of the basal plane into sheets which are then connected via the remaining oxalate and cations through N-H•••O hydrogen bonds to give rise to a three-dimensional structure. The complex-anion of 2 is comprised of a tin centre linked to a chlorine atom and a phenyl group, and cis-chelated by two oxalates in a distorted octahedral fashion. Each triethylammonium cation is connected to the complex-anion through bifurcated N-H•••(O,O) hydrogen bonds. These interactions lead to a discrete structure. A double Sn-C bond cleavage has occurred during the process of the formation of the compound 2. In both complounds 1 and 2, one cation exhibits some positional disorder.
    VL  - 6
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal

  • Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal

  • Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal

  • Inorganic and Analytical Chemistry Laboratory, Department of Chemistry, Faculty of Science and Technology, Cheikh Anta Diop University, Dakar, Senegal

  • Department of Chemistry and Biochemistry, University of Notre Dame, Nieuwland, Science Hall, Notre Dame, USA

  • Sections