Agrotransformation of tobacco leaves into cigarettes and cigars spawns upto 75% wastes which is an environmental and public nuisance owing to its noxious 0.6-3% (w/w) 3-(1-methyl-2-pyrrolindyl) pyridine (MPP) content. Considerately, this volumetric agrowaste is a prodigal loss during tobacco processing. Consequently, the utilization of these frugal wastes as a substrate for pyridine-3-carboxylic acid (PCA) synthesis is a green strategy to obliterate the ecological backlashes of tobacco waste. This concerted study reported the feasibility of utilizing Flue-Cured Virginia (FCV) tobacco waste as a starting substrate for synthesis of pyridine-3-carboxylic acid through MPP as a synthetic intermediate. The intermediate was extracted from powdered FCV wastes using petroleum ether and subsequently oxidized to PCA using 69% concentrated Nitric acid of volumes: 120, 115, 110,105, 100, 95, 90 and 85ml at 87±2°C. The results of the bench scale experiments indicated that the yield of PCA increases with increase in the volume of hot nitric acid; a maximum yield of 25ml was obtained with 100ml of hot nitric acid. The lowest yield of 17ml was from 85ml of hot nitric acid. MPP had a statistical mean boiling point of 249.3±2.082°C, mean density of 1.024±0.006g/cm3 whereas PCA had a mean boiling point of 262±3°C, mean density of 1.505843±0.05503g/cm3, mean pH of 3.3±0.19 and a computed mean solubility of 1.5±0.017g/L. The study has shown that FCV tobacco leaf wastes is a green environmental substrate for organic synthesis of pyridine-3-carboxylic acid.
Published in | American Journal of Heterocyclic Chemistry (Volume 4, Issue 4) |
DOI | 10.11648/j.ajhc.20180404.11 |
Page(s) | 49-54 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2019. Published by Science Publishing Group |
Arua, Tobacco, Flue-Cured Virginia, Leaf Wastes, Strategy
[1] | The observer: Tobacco farmers smile to the bank. June 29, 2011. Retrieved January 21st, 2017. https: //www. observer. ug/business/38-business/14052-tobacco-farmers-smile-to-the-bank. |
[2] | The New Vision. Uganda: Arua tobacco's cash itch, 14 February 2002, Joseph Olanyo, accessed 16th January 2017. https: //allafrica. com/stories/200202140438. html. |
[3] | Uganda National Tobacco Control Association (UNTCA) Shadow Report on The Status of Implementation of the World Health Organization Framework Convention on Tobacco Control (WHO-FCTC), Articles 8 & 13 in Uganda, pp. 1-20, 2012. |
[4] | R. Jacob, M. Swenseid. Niacin. In: Ziegler, E. E., Filer, L. J., (Eds.). Present Knowledge in Nutrition. 7th ed. ILSI Press, Washington D. C., pp. 185-190, 1996. |
[5] | M. F. Murray. “Niacin as a potential AIDs preventive facator”. Medical Hypotheses, vol. 53, no. 5, pp. 375-79, 1999. |
[6] | M. F. Murray, M. Langan, R. R. MacGregor. “Increased Plasma Tryptophan in HIV-patients treated with pharmacologic doses of Nicotinamide”. Nutrition, vol. 17, no. (7-8), pp. 654-56, 2001. |
[7] | P. L. Canner, K. G. Berge, N. K. Wenger, J. Stamler, L. Friedman, R. J. Prineas, W. Friedewald. “Fifteen-year mortality in Coronary Drug Project patients: long-term benefit with niacin”. Journal of the American College of Cardiology, vol. 8, no. 6, pp. 1245-55, Dec 1986. |
[8] | A. C. Boyonoski, J. C. Spronck, L. M. Gallacher, R. M. Jacobs, G. M. Shah, G. G. Poirier, J. B. Kirkland. “Niacin deficiency decreases bone marrow poly (ADP-ribose) and the latency of ethylnitrosourea-induced carcinogenesis in rats”. Journal of Nutrition, vol. 132, no. 1, pp. 108-14, Jan 2002. |
[9] | E. Negri, S. Franceschi, C. Bosetti. “Selected micronutrients and oral and pharyngeal cancer”. International Journal of Cancer, vol. 86, no. 1, pp. 122-27, Apri 2002. ” |
[10] | S. Franceschi, E. Bidoli, E. Negri, P. Zambon, R. Talamini, A. Roul, M. Parpinel, F. Levi, L. Simonato, C. La Vecchia. “Role of macronutrients, vitamins and minerals in the aetiology of squamous-cell carcinoma of the oesophagus”. International Journal of Cancer, vol. 86, no. pp. 626, Jun 2000. |
[11] | E. A. Gale, P. J. Bingley, C. L. Emmett, T. Collier. “European Nicotinamide Diabetes Intervention Trial (ENDIT) Group”. Lancet., vol. 363, no. 9413, pp. 925-31, Mar 2004. |
[12] | E. F. Lampeter, A. Klinghammer, W. A. Scherbaum, E. Heinze, B. Haastert, G. Giani and H. Kolb. “The Deutsche Nicotinamide Intervention Study: an attempt to prevent type 1 diabetes”. Diabetes, vol. 47, no. 6, pp. 980-84, 1998. |
[13] | C. J. Greenbaum, S. E. Kahn, J. P. Palmer. “Nicotinamide’s effects on glucose metabolism in subjects at risk for IDDM”. Diabetes, vol. 45, no. 11, pp. 1631-4, Nov. 1996. |
[14] | Knopp, R. H. Drug treatment of lipid disorders. The New England Journal of Medicine, vol. 341, no. 7, pp. 498-511, 1999. |
[15] | J. G. Speight. “Chemical and Process Design Handbook”. McGraw-Hill. pp. 2. 352-353, 2002. ISBN 0-07-137433-7. |
[16] | S. Kumar and B. V. Babu. “Process Intensification of Nicotinic Acid Production via Enzymatic Conversion using Reactive Extraction”. Chemical and Biochemical Engineering Quarterly, vol. 23, no. 3, pp. 367–76, 2009. |
[17] | N. J. Rasul, J. Shah, A. Shah, F. Gul. “Seperation identification and determination of Nicotinic acid and Nicotinamide from cigarette tobacco and smoke part I”. Journal of the Chemical Society of Pakistan, vol. 19, no. 4, pp. 306-09, 1997. |
[18] | A. F. Mulyadia, S. Wijanab, A. S. Wahyudi. Optimization of Nicotine Extraction in Tobacco Leaf (Nicotiana tabacum L.): (Study: Comparison of Ether and Petroleum Ether). The International Conference on Chemical Engineering, UNPAR, 2013. |
[19] | S. Purwono, B. Murachman, J. Wintoko, B. A. Simanjuntak, P. P. Sejati, N. E. Permatasari and D. Lidyawati. “The Effect of Solvent for Extraction for Removing Nicotine on the Development of Charcoal Briquette from Waste of Tobacco Stem”. Journal of Sustainable Energy & Environment, vol. 2, pp. 11-13, 2011. |
[20] | K. Mahendra, C. V. Narasimha Rao, Y. L. N. Murthy, K. K. Bala Murali. Development of High Value Phytochemicals From Green Tobacco. Int. J. Chem. Res., vol. 01, pp. 23-28, 2011. |
[21] | C. D. Mathew, T. T. Nagasawa, H. Yamada, M. Kobayashi. “Nitrilase-catalyzed production of nicotinic acid from 3-Cyanopyridine in Rhodococcus rhodochrous J1”. Applied and Environmental Microbiology, vol. 54, no. 4, pp. 1030-32, 1988. |
[22] | A. V. Peter, J. K. Christopher, S. J. C. Peter. Conversion of 3-cyanopyridine to nicotinic acid by Nocardia rhodochrous LL100-21. Enzyme Microbial Technology, vol. 11, no. 12, pp. 815-23, 1989. |
[23] | Q.A. Almatawah, D.A. Cowan. ‘‘Thermostable nitrilase catalysed production of nicotinic acid from 3-cyanopyridine’’. Enzyme and Microbial Technology, vol. 25, pp. 718-24, 1999. |
[24] | O. Kaplan, V. Vejvoda, O. Plíhal, P. Pompach, D. Kavan, P. Fialová, K. Bezouška, M. Macková, M. Cantarella, V. Jirku, V. Kren, L. Martínková. “Purification and characterization of a nitrilase from Aspergillus niger K10”. Applied Microbiology and Biotechnology, vol. 73, pp. 567-75, 2006. |
[25] | K. Maria, C. Laura, G. Alberto, I. Roberta, E. M. T. Ondîej, S. Agata, M. Ludmila and F. Ahmad, A. G. Moat. “Nicotinic acid biosynthesis in prototrophs and tryptophan auxotrophs of Saccharomyces cerevisiae”. Journal of Biological Chemistry, vol. 241, no. 4, pp. 775-80, 1966. |
APA Style
Timothy Omara, Bashir Musau, Sarah Kagoya. (2019). Frugal Utilization of Flue-Cured Virginia Nicotiana tabacum Leaf Wastes as a Vicissitudinous Substrate for Optimized Synthesis of Pyridine-3-Carboxylic Acid. American Journal of Heterocyclic Chemistry, 4(4), 49-54. https://doi.org/10.11648/j.ajhc.20180404.11
ACS Style
Timothy Omara; Bashir Musau; Sarah Kagoya. Frugal Utilization of Flue-Cured Virginia Nicotiana tabacum Leaf Wastes as a Vicissitudinous Substrate for Optimized Synthesis of Pyridine-3-Carboxylic Acid. Am. J. Heterocycl. Chem. 2019, 4(4), 49-54. doi: 10.11648/j.ajhc.20180404.11
@article{10.11648/j.ajhc.20180404.11, author = {Timothy Omara and Bashir Musau and Sarah Kagoya}, title = {Frugal Utilization of Flue-Cured Virginia Nicotiana tabacum Leaf Wastes as a Vicissitudinous Substrate for Optimized Synthesis of Pyridine-3-Carboxylic Acid}, journal = {American Journal of Heterocyclic Chemistry}, volume = {4}, number = {4}, pages = {49-54}, doi = {10.11648/j.ajhc.20180404.11}, url = {https://doi.org/10.11648/j.ajhc.20180404.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajhc.20180404.11}, abstract = {Agrotransformation of tobacco leaves into cigarettes and cigars spawns upto 75% wastes which is an environmental and public nuisance owing to its noxious 0.6-3% (w/w) 3-(1-methyl-2-pyrrolindyl) pyridine (MPP) content. Considerately, this volumetric agrowaste is a prodigal loss during tobacco processing. Consequently, the utilization of these frugal wastes as a substrate for pyridine-3-carboxylic acid (PCA) synthesis is a green strategy to obliterate the ecological backlashes of tobacco waste. This concerted study reported the feasibility of utilizing Flue-Cured Virginia (FCV) tobacco waste as a starting substrate for synthesis of pyridine-3-carboxylic acid through MPP as a synthetic intermediate. The intermediate was extracted from powdered FCV wastes using petroleum ether and subsequently oxidized to PCA using 69% concentrated Nitric acid of volumes: 120, 115, 110,105, 100, 95, 90 and 85ml at 87±2°C. The results of the bench scale experiments indicated that the yield of PCA increases with increase in the volume of hot nitric acid; a maximum yield of 25ml was obtained with 100ml of hot nitric acid. The lowest yield of 17ml was from 85ml of hot nitric acid. MPP had a statistical mean boiling point of 249.3±2.082°C, mean density of 1.024±0.006g/cm3 whereas PCA had a mean boiling point of 262±3°C, mean density of 1.505843±0.05503g/cm3, mean pH of 3.3±0.19 and a computed mean solubility of 1.5±0.017g/L. The study has shown that FCV tobacco leaf wastes is a green environmental substrate for organic synthesis of pyridine-3-carboxylic acid.}, year = {2019} }
TY - JOUR T1 - Frugal Utilization of Flue-Cured Virginia Nicotiana tabacum Leaf Wastes as a Vicissitudinous Substrate for Optimized Synthesis of Pyridine-3-Carboxylic Acid AU - Timothy Omara AU - Bashir Musau AU - Sarah Kagoya Y1 - 2019/01/25 PY - 2019 N1 - https://doi.org/10.11648/j.ajhc.20180404.11 DO - 10.11648/j.ajhc.20180404.11 T2 - American Journal of Heterocyclic Chemistry JF - American Journal of Heterocyclic Chemistry JO - American Journal of Heterocyclic Chemistry SP - 49 EP - 54 PB - Science Publishing Group SN - 2575-5722 UR - https://doi.org/10.11648/j.ajhc.20180404.11 AB - Agrotransformation of tobacco leaves into cigarettes and cigars spawns upto 75% wastes which is an environmental and public nuisance owing to its noxious 0.6-3% (w/w) 3-(1-methyl-2-pyrrolindyl) pyridine (MPP) content. Considerately, this volumetric agrowaste is a prodigal loss during tobacco processing. Consequently, the utilization of these frugal wastes as a substrate for pyridine-3-carboxylic acid (PCA) synthesis is a green strategy to obliterate the ecological backlashes of tobacco waste. This concerted study reported the feasibility of utilizing Flue-Cured Virginia (FCV) tobacco waste as a starting substrate for synthesis of pyridine-3-carboxylic acid through MPP as a synthetic intermediate. The intermediate was extracted from powdered FCV wastes using petroleum ether and subsequently oxidized to PCA using 69% concentrated Nitric acid of volumes: 120, 115, 110,105, 100, 95, 90 and 85ml at 87±2°C. The results of the bench scale experiments indicated that the yield of PCA increases with increase in the volume of hot nitric acid; a maximum yield of 25ml was obtained with 100ml of hot nitric acid. The lowest yield of 17ml was from 85ml of hot nitric acid. MPP had a statistical mean boiling point of 249.3±2.082°C, mean density of 1.024±0.006g/cm3 whereas PCA had a mean boiling point of 262±3°C, mean density of 1.505843±0.05503g/cm3, mean pH of 3.3±0.19 and a computed mean solubility of 1.5±0.017g/L. The study has shown that FCV tobacco leaf wastes is a green environmental substrate for organic synthesis of pyridine-3-carboxylic acid. VL - 4 IS - 4 ER -