International Journal of Computational and Theoretical Chemistry

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Research Article |

Molecule-Adapted Gaussian Basis Sets Generated in Multi-Parallel Hartree-Fock Scheme

For a molecule, all atoms are equally shared in several parallel-computers. Firstly, standard atomic Gaussian parameters (centers and exponents) for each atom are atom-independently and -simultaneously re-optimized by minimizing of molecular energy, while its surrounding atoms are kept in standard ones. For all atoms, by replacing re-optimized Gaussian parameters instead of standard ones, the molecular properties are improved, and such procedure is repeated N-times until a minimum energy is gained. Within the multi-parallel Hartree-Fock (MPHF) scheme, the McLean’s 6-311G set for atoms (H, C, N, O) are re-optimized in various molecular environments, and used to calculate some HF-properties such as molecular energy and its components, and dipole moments. In the MPHF scheme, the eigen energy-related properties (E, εHOMO, εLUMO) are soon converged at N=1~2, but the wave function-related properties (<K>, <V>, μ) are slowly converged to N=5~6. Their limit values are closer to those obtained from the highest quality sets (6-311++G(3df,3pd), aug-cc-pVQZ). By introducing the multi-parallel calculus algorithm in which several computers are simultaneously operated, the time-consuming in the MPHF/6-311G scheme might become smaller than one in the HF scheme based on the 6-311++G(3df,3pd) set. The generation technique of molecule-adapted Gaussian basis sets with the multi-parallel calculus algorithm can be also imitated in the high level schemes such as CASSCF, MP2, DFT and HF over ab initio molecular dynamics.

Gaussian Basis Set, Hartree-Fock Method, Parallel Computer, Floating Shift, Scale Factor

APA Style

Cha, T., Ri, K., Kim, G., Pak, Y. (2023). Molecule-Adapted Gaussian Basis Sets Generated in Multi-Parallel Hartree-Fock Scheme. International Journal of Computational and Theoretical Chemistry, 11(1), 26-33.

ACS Style

Cha, T.; Ri, K.; Kim, G.; Pak, Y. Molecule-Adapted Gaussian Basis Sets Generated in Multi-Parallel Hartree-Fock Scheme. Int. J. Comput. Theor. Chem. 2023, 11(1), 26-33. doi: 10.11648/j.ijctc.20231101.13

AMA Style

Cha T, Ri K, Kim G, Pak Y. Molecule-Adapted Gaussian Basis Sets Generated in Multi-Parallel Hartree-Fock Scheme. Int J Comput Theor Chem. 2023;11(1):26-33. doi: 10.11648/j.ijctc.20231101.13

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. G. Lippert, J. Hutter, M. Parrinello, Theor. Chem. Acc. 103 (1999) 124.
2. F. Jensen. Introduction to Computational Chemistry. -2nd, England: John Wiley & Sons Ltd; 2007, pp. 192-231.
3. M. Tachikawa, Y. Osamura, J. Chem. Phys. 113 (2000) 4942.
4. M. Tachikawa, K. Taneda, K. Mori, Int. J. Quantum Chem. 75 (1999) 497.
5. N. Shimizu, T. Ishimoto, M. Tachikawa, Theor. Chem. Acc. 130 (2011) 679.
6. T. H. Dunning, J. Chem. Phys. 53 (1970) 2823.
7. W. J. Hehre, R. Ditchfie, J. A. Pople, J. Chem. Phys. 56 (1972) 2257.
8. F. J. Jensen, Chem. Phys. 115 (2001) 9113.
9. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297.
10. A. C. Neto, E. P. Muniz, R. Centoducatte, F. E. Jorge, Theochem: J. Mol. Struct. 718 (2005) 219.
11. F. Jensen, Wiley Interdisciplinary Review, Com. Mol. Sci. 3 (2013) 273. R.
12. Q. Zhang, W. J. Fan, Int. J. Quant. Chem. 115 (2015) 570.
13. A. A. Frost, J. Chem. Phys. 47 (1967) 3707.
14. R. E. Christoffersen, Advan. Quant. Chem. 6 (1972) 333.
15. H. Huber, Chem. Phys. Lett., 62 (1979), 95.
16. A. H. Pakiari, M. Solimannejad, J. Mol. Str. (Theochem) 583 (2002) 249.
17. M. T. Barreto, E. P. Muniz, F. E. Jorge, R. Centoducatte, Brazilian J. of Phys. 35 (2005) 965.
18. F. E. Jorge, A. C. Neto, J. Mol. Str. (Theochem) 589–590 (2002) 359.
19. D. Neisius, G. Verhaegen, Chem. Phys. Lett. 78 (1981) 147.
20. D. Neisius, G. Verhaegen, Chem. Phys. Lett. 89 (1982) 228.
21. M. F. Kasim, S. Lehtola, S. M. Vinko, J. Chem. Phys. 156 (2022) 084801.
22. R. A. Shaw, J. G. Hill, Mol. Phys. 116 (2018) 1460.
23. T. Tamayo-Mendoza, C. Kreisbeck, R. Lindh, A. Aspuru-Guzik, ACS Cent. Sci. 4 (2018) 559.
24. T. Ishimito, M. Tachikawa, Int. J. Quantum Chem. 9 (2010) 8.
25. T. H. Cha, G. C. Kim, K. J. Ri,. Chem. Phys. 570 (2023) 111890.
26. T. H. Cha, Chem. Phys. Lett. 765 (2021) 138285.
27. T. H. Cha, Chem. Phys. Lett. 773 (2021) 138587.
28. A. D. McLean, G. S. Chandler, J. Chem. Phys. 72 (1980) 5639.
29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D. 01, Gauss ian, Inc., Wallingford, CT, 2009.