International Journal of Astrophysics and Space Science

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Research Article |

Protoplanetary Disk Formation in a Self-gravitating Molecular Cloud

The formation of the protoplanetary disc is a crucial step in planetary system formation. The study of protoplanetary disk formation is important for understanding the origins of our solar system as well as planets orbiting other stars. Many studies of protoplanetary disc formation focus on the initial properties of the planetary disc, such as mass, radius, and density, rather than the parent cloud properties. As a result, we’re looking into the formation of the protoplanetary disc in the context of the central star-forming core and the parent cloud parameters. Thus we derive numerical results from the theoretical model using boundary conditions, confirming the presence of a correct link between the features of the developing disk, parent cloud, and central core. In theory, we model the disc’s mass, density, and temperature in terms of the parent cloud and the center core’s attributes. In addition, using the mass-momentum transfer method in conjunction with the newly formulated disc mass and the associated host star, we determine the masses of the disk and core. We also explain how the magnetic field affects disc formation by formulating the mass of the disc formed from a magnetized cloud. The findings reveal that the properties of the parental cloud and the host star have a significant impact on the formation of a protoplanetary disc and its essential dynamic parameters, such as mass, surface density, and mass density.

Molecular Cloud, Self-gravitating, Protostellar Core, Protostar, Protoplanetary Disk, Planetary System, Accretion

APA Style

Muleta Kumssa, G., Belay Tessema, S. (2023). Protoplanetary Disk Formation in a Self-gravitating Molecular Cloud. International Journal of Astrophysics and Space Science, 11(2), 23-37.

ACS Style

Muleta Kumssa, G.; Belay Tessema, S. Protoplanetary Disk Formation in a Self-gravitating Molecular Cloud. Int. J. Astrophys. Space Sci. 2023, 11(2), 23-37. doi: 10.11648/j.ijass.20231102.12

AMA Style

Muleta Kumssa G, Belay Tessema S. Protoplanetary Disk Formation in a Self-gravitating Molecular Cloud. Int J Astrophys Space Sci. 2023;11(2):23-37. doi: 10.11648/j.ijass.20231102.12

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. ALMA Partnership, Vlahakis, C., Hunter, T. R. et al. 2015, July, ApJ, 808 (1), L4.
2. Ansdell M. et al., 2016, ApJ, 828, 46.
3. Anathpindika, S., & di Francesco, J. 2013, April, MNRAS, 430 (3), 1854-1866.
4. Armitage, P. J. 2010, Astrophysics of Planet Formation.
5. Bohlin, R. C., Savage, B. D., & Drake, J. F. 1978, August, ApJ, 224, 132-142.
6. Calvet, N., Hartmann, L., & Strom, S. E. 2000, Protostars and Planets IV, 377.
7. Ward-Thompson, D., & Whitworth, A. P. 2011, An Introduction to StarFormation.
8. Cox, E. G., Harris, R. J., Looney, L. W. et al. 2017, December, ApJ, 851 (2), 83.
9. Elmegreen, B. G., & Scalo, J. 2004, ARAA, 42, 211.
10. Enoch, M. L., Corder, S., Dunham, M. M., & Duch?ne, G. 2009, December, ApJ, 707 (1), 103-113.
11. Kumssa, G. M. and Tessema, S. B., 2019, Astronomische Nachrichten, 340 (8), pp. 736-743.
12. Rosotti et al., 2017, MNRAS, 468 (2): 1631-8.
13. Hartmann et al., 2005, Astronomy and Astrophysics, 440 (2), pp. 775-782.
14. Hildebrand, R. H. 1983, QJRAS, 24, 267.
15. Jonathan P. Williams and Lucas A. Cieza, 2011, 10.1146/annurev-astro-081710-102548.
16. R. S. Klessen and P. Hennebelle, 2010, AA 520, A17 (2010).
17. KennicuttJr, R.C.andEvans, N.J., 2012, AnnualReview of Astronomyand Astrophysics, 50, pp. 531-608.
18. Kenyon, S. J., and Bromley, B. C. 2009, September, VizieR Online DataCatalog, J/ApJS/179/451.
19. Kolb, U., 2010, Extreme environment astrophysics. Cambridge UniversityPress, pp. 11-12.
20. Lee, N., Williams, J. P. and Cieza, L. A., 2011, ApJ, 736 (2), p. 135.
21. Mac Low, M. M. and Klessen, R. S., 2004, Reviews of modern physics, 76 (1), p. 125.
22. McKee, C. F. and Ostriker, E. C., 2007, Annu. Rev. Astron. Astrophys., 45, pp. 565-687.
23. Mann, R. K., Di Francesco, J., Johnstone, D. et al. 2014, March, ApJ, 784 (1), 82.
24. Mann, R. K., Andrews, S. M., Eisner, J. A., Williams, J. P., Meyer, M. R., Di Francesco, J., Carpenter, J. M. and Johnstone, D., 2015. Protoplanetarydisk masses in the young NGC 2024 cluster. The Astrophysical Journal, 802 (2), p. 77.
25. Matsumoto, T., and Hanawa, T. 2003, October, ApJ, 595 (2), 913-934.
26. Najita et al., 2015, MNRAS, 450 (4), 3559-3567.
27. Nixon et al., 2018, July, MNRAS, 477 (3), 3273-3278.
28. Okuzumi et al., ApJ, 821 (2), p. 82.
29. Palla, F., 2002, Physics of Star Formation in Galaxies (pp. 9-133). Springer, Berlin, Heidelberg.
30. Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K. and Denzmore, P., 2006. Interpreting spectral energy distributions from young stellar objects. I. A grid of 200,000 YSO model SEDs. The Astrophysical Journal Supplement Series, 167 (2), p. 256.
31. Seifried et al., 2013 MNRAS, 432 (4), pp. 3320-3331.
32. Walch et al., 2010, MNRAS, 402 (4), 2253-2263.
33. Williams, J. P., and Best, W. M. J. 2014, ApJ, 788, 59.
34. Williams J. P., Cieza L. A., 2011, ARA and A, 49, 67.
35. Walch et al., 2017, MNRAS, 467 (1), pp. 922-927.