Engineering Physics

Archive

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Modeling the Behavior of a Photovoltaic Generator Using a Four-Parameter Electrical Model

Photovoltaic solar energy consists of the direct conversion of sunlight into electricity by means of solar cells. These cells, electrically interconnected in series and/or in parallel, form the photovoltaic generator (GPV). The efficiency of the GPV is influenced by the irradiation and the temperature. In the intertropical zone, these two atmospheric factors vary rapidly and considerably influence the efficiency of the photovoltaic generator. This paper highlights the characteristics of the four-parameter cell photovoltaic generator when these two parameters (irradiance and/or temperature) vary rapidly. The simulation results obtained with the MATLAB/SIMULINK software show that with the four-parameter model the response time of the generator is proportional to the variation of the irradiance, i.e. the irradiance perturbation has an almost instantaneous effect on the current delivered by the photovoltaic generator and, when the temperature increases, the maximum power decreases, which confirms the correlation between these parameters. In fact, it can be seen that the developed model gives results close to the values provided by the manufacturers (five parameters) for amorphous, monocrystalline and polycrystalline cells with relative errors varying between 0.015 and 1.26%. The response time of the PV generator obtained with this model is 2 ms. The evaluation of the simulation method was also performed.

Photovoltaic Generator, Irradiance, Temperature, Parameter

APA Style

Abdouramani Dadjé, Fabrice Kwefeu Mbakop, Dieudonné Marcel Djanssou, Ruben Zieba Falama. (2022). Modeling the Behavior of a Photovoltaic Generator Using a Four-Parameter Electrical Model. Engineering Physics, 6(1), 5-12. https://doi.org/10.11648/j.ep.20220601.12

ACS Style

Abdouramani Dadjé; Fabrice Kwefeu Mbakop; Dieudonné Marcel Djanssou; Ruben Zieba Falama. Modeling the Behavior of a Photovoltaic Generator Using a Four-Parameter Electrical Model. Eng. Phys. 2022, 6(1), 5-12. doi: 10.11648/j.ep.20220601.12

AMA Style

Abdouramani Dadjé, Fabrice Kwefeu Mbakop, Dieudonné Marcel Djanssou, Ruben Zieba Falama. Modeling the Behavior of a Photovoltaic Generator Using a Four-Parameter Electrical Model. Eng Phys. 2022;6(1):5-12. doi: 10.11648/j.ep.20220601.12

Copyright © 2022 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. W. De Soto. (2004). Improvement and Validation of a Model for Photovoltaic Array Performance. Madison: M. SC. thesis, University of Wisconsin-Madison.
2. R. Chenni, A detailed modeling method for photovoltaic cells. Energy, 32, 1724–1730.
3. D. KING (2004). Photovoltaic Array Performance Model. Albuquerque Nouveau-Mexique: Photovoltaic System R&D Department Sandia National Laboratories.
4. Jimmy Royer (1998). LE POMPAGE PHOTOVOLTÏQUE: Manuel de cours à l’intention des ingénieurs et des techniciens [PHOTOVOLTIC PUMPING: A Course Manual for Engineers and Technicians]. Ottawa: Éditions MultiMondes.
5. L. M. Ayompe (2010). Validated real-time energy models for small-scale grid-connected PV-systems. Energy (35), 4086-4091.
6. L. Antonio, S. Hegedus. (2003). Handbook of Photovoltaic Science And Engeneering. John Wiley & Sons Ltd.
7. S. R. Wenham (2007). Applied Photovoltaic’s Second Edition. TJ International Ltd.
8. Townsend. A Method for Estimating the Long-Term Performance of Direct-Coupled Photovoltaic Systems. Madison: M. S. thesis, University of Wisconsin-Madison (1989).
9. C. Hua, C. Shen, “Comparatives study of peak power tracking techniques for solar storage system”, IEEE Applied Power Electronics Conference, APEC’98, Vol. 2, 1998, pp. 679-685.
10. M. Gradella Villalva, J. Raphael Gazoli, et E. Ruppert Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays”, IEEE Transactions on Power Electronics, Vol. 24, N°.5, may 2009, pp. 1-10.
11. Nichiporuk Oleksiy, "Simulation, manufacture, analysis of photovoltaic cells with interdigital rear contacts", Doctoral Thesis, INSA Lyon, 2005, pp. 17-31.
12. Observ’ER, “Solar photovoltaic barometer”, Solar Systems, April 2004, N°160, pp. 69-83.
13. Sidibba, A, Ndiaye, D., El Bah, M. and Bouhamady, S. (2018) Analytical Modeling and Determination of the Characteristic Parameters of the Different Commercial Technologies of Photovoltaic Modules. Journal of Power and Energy Engineering, 6, 14-27. doi: 10.4236/jpee.2018.63002.
14. Razagui, K. Abdeladim, S. Semaoui, A. Hadj Arab, S. Boulahchiche, Modeling the forecasted power of a photovoltaic generator using numerical weather prediction and radiative transfer models coupled with a behavioral electrical model, Energy Reports, Volume 6, Supplement 1,2020, Pages 57-62, ISSN 2352- 847, https://doi.org/10.1016/j.egyr.2019.08.018.
15. D. M. Djanssou, A. Dadjé, A. Tom, N. Djongyang, "Improvement of the Dynamic Response of Robust Sliding Mode MPPT Controller-Based PSO Algorithm for PV Systems under Fast-Changing Atmospheric Conditions", International Journal of Photoenergy, vol. 2021, Article ID 6671133, 13 pages, 2021. https://doi.org/10.1155/2021/6671133
16. P. I. S. E, “Studies of UEMOA and Cameroon energy profiles”, J2CM GESTION, France, 2005 pp. 16-23.
17. World Solar Commission, “World Solar Program Implementation Mechanism”, MAISON DE L’UNESCO SC/EST - 1, rue Miollis 75732 Paris Cedex 15 – France, 1999, pp. 1-29.
18. H. Yamarhita, K. Tamahashi, M. Michihim., A. Tsuyoshi, K. Amako, and M. Park, «A novel Simulation technique of the PV generation system using real weather conditions», in 2002 Proc. Power Conversion Con!, V01.2, pp. 839 444, April 2002.
19. G. A. Vokas, A. V. Machias, and J. L. Souflis, “Computer modeling and parameters estimation for solar cells”, h 1991 Proe Medirerranean Electrotechnical Conf, v 0l. l. pp. 206 -209, May 1991.
20. D. L. King, J. A. Kratochvil, W. E. Boyson, and W. I. Bower, Sandia National Laboratories. ‘Field experience with a new performance characterization procedure for photovoltaic arrays’.
21. Outdoor testing of photovoltaic arrays in the Saharan region. Mohammed Sadok, Ahmed Mehdaoui. Research Unit of Renewable Energy in Saharan Middle (URER/MS), B. P. 478, drar 01000.
22. Olivier Gergaud, “Energy modeling and economic optimization of a wind and photovoltaic production system coupled to the grid and associated with an accumulator”, Doctoral thesis from the École Normale Supérieure de Cachan December 9, 2002.
23. D. M. Djanssou, A. Dadjé and N. Djongyang, Estimation of Photovoltaic Cell Parameters Using the Honey Badger Algorithm; International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249-8958 (Online), Volume-11 Issue-5, June 2022, pp. 105-108. DOI: 10.35940/ijeat.E3552.0611522.