Earth Sciences

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Validation of MERIT DEM’s Performance as a Bare-Earth Model Using ICESat-2 Geolocated Photons

Digital elevation models represent the Earth's surface and play a key role in earth sciences by enabling the possibility of deriving terrain variables; the terrain variables are essential inputs for environmental modeling. The availability of open-access digital surface models has significantly advanced the understanding of earth system dynamics and also allowed researchers to generate digital terrain models, aka bare-earth models. These bare-earth models are essential data sets for applications related to hydrology and geomorphology, especially for disaster management. Under the category of open-accessible bare-earth models, Multi-Error-Removed Improved-Terrain DEM or MERIT DEM is the first kind of product unfolded by applying numerous error removal algorithms from existing DEM sources. This research reports the results after validating the MERIT DEM's performance by emphasizing its tree-height bias removal algorithm. Towards this, ground-reflected photons accrued from the ICESat-2 mission were used as reference data due to their attribution of high accuracy. Two test sites, one located in the rugged terrain of the outer Himalayas, the Lacchiwala Reserve forest, and the other, rolling hills at the Bhadra wildlife sanctuary located in the Western Ghats of the Indian sub-continent were used as test sites for validating the MERIT DEM's accuracy. The results derived after computing statistical formulae like RMSE, MAE, MBE, and profile-based visual analytics helped understand the performance of the MERIT DEM as a bare-earth model. The RMSE, MAE, and MBE for the Lachhiwala Reserve forest are 10.28 m, 7.78 m, and 0.69 m, respectively. Similarly, the RMSE, MAE, and MBE values for the Bhadra wildlife sanctuary are 4.52 m, 3.82 m, and 3.04 m, respectively. The assessment confirms that the accuracies are within the MERIT DEM's specifications and assured the successful implementation of MERIT DEM's tree-height removal algorithm since the elevations from the MERIT DEM are always lesser than the canopy height in both the test sites. Our research also investigated the reasons for the inaccuracies obtained at both the test sites and suggested using improved tree-height estimations from high-resolution canopy height data in the future version of MERIT DEM.

MERIT DEM, Bare-Earth Model, ICESat-2, Geolocated Photons, Accuracy Assessment, Tree-Height Bias

APA Style

Giribabu Dandabathula, Rohit Hari, Jayant Sharma, Koushik Ghosh, Apurba Kumar Bera. (2023). Validation of MERIT DEM’s Performance as a Bare-Earth Model Using ICESat-2 Geolocated Photons. Earth Sciences, 12(5), 166-175. https://doi.org/10.11648/j.earth.20231205.15

ACS Style

Giribabu Dandabathula; Rohit Hari; Jayant Sharma; Koushik Ghosh; Apurba Kumar Bera. Validation of MERIT DEM’s Performance as a Bare-Earth Model Using ICESat-2 Geolocated Photons. Earth Sci. 2023, 12(5), 166-175. doi: 10.11648/j.earth.20231205.15

AMA Style

Giribabu Dandabathula, Rohit Hari, Jayant Sharma, Koushik Ghosh, Apurba Kumar Bera. Validation of MERIT DEM’s Performance as a Bare-Earth Model Using ICESat-2 Geolocated Photons. Earth Sci. 2023;12(5):166-175. doi: 10.11648/j.earth.20231205.15

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Zhou QM (2017) Digital elevation model and digital surface model. In Richardson D, Castree N, Goodchild MF, Kobayashi A, Liu W, Marston RA (Eds.), The international encyclopedia of geography: People, the Earth, environment, and technology. Wiley-Blackwell, NJ, pp 1–17. https://doi.org/10.1002/9781118786352.wbieg0768
2. Moudrý V, Lecours V, Gdulová K, Gábor L, Moudrá L, Kropáček J, Wild J (2018) On the use of global DEMs in ecological modelling and the accuracy of new bare-earth DEMs. Ecol Model 383: 3-9. https://doi.org/10.1016/j.ecolmodel.2018.05.006
3. Polidori L, El Hage M (2020) Digital elevation model quality assessment methods: A critical review. Remote sens 12 (21): 3522. https://doi.org/10.3390/rs12213522
4. Uuemaa E, Ahi S, Montibeller B, Muru M, Kmoch A (2020) Vertical accuracy of freely available global digital elevation models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens 12 (21): 3482. https://doi.org/10.3390/rs12213482
5. Hirt C (2017) Artefact detection in global digital elevation models (DEMs): The Maximum Slope Approach and its application for complete screening of the SRTM v4.1 and MERIT DEMs. Remote Sens Environ 207: 27-41. https://doi.org/10.1016/j.rse.2017.12.037
6. Sampson CC, Smith AM, Bates PD, Neal JC, Trigg MA (2016) Perspectives on open access high resolution digital elevation models to produce global flood hazard layers. Front Earth Sci 3: 85. https://doi.org/10.3389/feart.2015.00085
7. Gallant JC, Read AM, Dowling TI (2012) Removal of tree offsets from SRTM and other digital surface models. Int Arch Photogramm Remote Sens Spat Inf Sci 39 (14): 275-280. https://doi.org/10.5194/ISPRSARCHIVES-XXXIX-B4-275-2012
8. DeWitt JD, Warner TA, Chirico PG, Bergstresser SE (2017) Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering. GISci Remote Sens 54 (4): 552-72. https://doi.org/10.1080/15481603.2017.1295514
9. Yamazaki D, Ikeshima D, Tawatari R, Yamaguchi T, O'Loughlin F, Neal JC, Sampson CC, Kanae S, Bates PD (2017) A high-accuracy map of global terrain elevations. Geophys Res Lett 44 (11): 5844-53. https://doi.org/10.1002/2017GL072874
10. Faherty D, Schumann GJ, Moller DK (2020) Bare earth DEM generation for large floodplains using image classification in high-resolution single-pass InSAR. Front Earth Sci 8: 27. https://doi.org/10.3389/feart.2020.00027
11. Liu Y, Bates PD, Neal JC, Yamazaki D (2021) Bare-Earth DEM Generation in Urban Areas for Flood Inundation Simulation Using Global Digital Elevation Models. Water Resour Res 57 (4): e2020WR028516.
12. Pimenova O, Roberts C, Rizos C (2022) Regional “Bare-Earth” Digital Terrain Model for Costa Rica Based on NASADEM Corrected for Vegetation Bias. Remote Sens 14 (10): 2421. https://doi.org/10.3390/rs14102421
13. Hawker L, Uhe P, Paulo L, Sosa J, Savage J, Sampson C, Neal J (2022) A 30 m global map of elevation with forests and buildings removed. Environ Res Lett 17 (2): 024016. https://doi.org/10.1088/1748-9326/ac4d4f
14. Yamazaki D, Ikeshima D, Sosa J, Bates PD, Allen GH, Pavelsky TM (2019) MERIT Hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resour Res 55 (6): 5053-73. https://doi.org/10.1029/2019WR024873
15. Amatulli G, McInerney D, Sethi T, Strobl P, Domisch S (2020) Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers. Sci Data 7 (1): 162. https://doi.org/10.1038/s41597-020-0479-6
16. Rizzoli P, Martone M, Gonzalez C, Wecklich C, Tridon DB, Bräutigam B, Bachmann M, Schulze D, Fritz T, Huber M, Wessel B (2017) Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J Photogramm Remote Sens 132: 119-39. https://doi.org/10.1016/j.isprsjprs.2017.08.008
17. Wessel B (2018) TanDEM-X ground segment–DEM products specification document. Oberpfaffenhofen, Germany: EOC, DLR.
18. AIRBUS (2020) Copernicus DEM: Copernicus digital elevation model product hand book Report AO/1–9422/18/I-LG, European Space Agency. https://spacedata.copernicus.eu/documents/20126/0/GEO1988-CopernicusDEM-SPE-002_ProductHandbook_I1.00.pdf.
19. Willmott CJ, Matsuura K (2006) On the use of dimensioned measures of error to evaluate the performance of spatial interpolators. Int J Geogr Inf Sci 20 (1): 89-102. https://doi.org/10.1080/13658810500286976
20. Schneider P, Xhafa F (2022) Anomaly detection: Concepts and methods. In: Anomaly Detection and Complex Event Processing Over IoT Data Streams: With Application to EHealth and Patient Data Monitoring. Academic Press. pp 49–66. https://doi.org/10.1016/b978-0-12-823818-9.00013-4
21. Fisher PF, Tate NJ (2006) Causes and consequences of error in digital elevation models. Prog Phys Geogr 30 (4): 467-89. https://doi.org/10.1191/0309133306pp492ra
22. Mesa-Mingorance JL, Ariza-López FJ (2020) Accuracy assessment of digital elevation models (DEMs): A critical review of practices of the past three decades. Remote Sens 12 (16): 2630. https://doi.org/10.3390/rs12162630
23. Höhle J, Höhle M (2009) Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J Photogramm Remote Sens 64 (4): 398-406. https://doi.org/10.1016/j.isprsjprs.2009.02.003
24. Liu Z, Zhu J, Fu H, Zhou C, Zuo T (2020) Evaluation of the vertical accuracy of open global DEMs over steep terrain regions using ICESat data: a case study over Hunan Province, China. Sensors 20 (17): 4865. https://doi.org/10.3390/s20174865
25. Vassilaki DI, Stamos AA (2020) TanDEM-X DEM: Comparative performance review employing LIDAR data and DSMs. ISPRS J Photogramm Remote Sens 160: 33-50. https://doi.org/10.1016/j.isprsjprs.2019.11.015
26. Chen W, Yao T, Zhang G, Li F, Zheng G, Zhou Y, Xu F (2022) Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau. Cryosphere 16 (1): 197-218. https://doi.org/10.5194/tc-16-197-2022
27. Dandabathula G, Hari R, Ghosh K, Bera AK, Srivastav SK (2022) Accuracy assessment of digital bare-earth model using ICESat-2 photons: analysis of the FABDEM. Model Earth Syst Environ. https://doi.org/10.1007/s40808-022-01648-4
28. Li H, Zhao J, Yan B, Yue L, Wang L (2022) Global DEMs vary from one to another: an evaluation of newly released Copernicus, NASA and AW3D30 DEM on selected terrains of China using ICESat-2 altimetry data. Int J Digit Earth 15 (1): 1149-68. https://doi.org/10.1080/17538947.2022.2094002
29. Neumann TA, Martino AJ, Markus T, Bae S, Bock MR, Brenner AC, Brunt KM, Cavanaugh J, Fernandes ST, Hancock DW, Harbeck K (2019) The ice, cloud, and land elevation Satellite–2 mission: a global geolocated photon product derived from the advanced topographic laser altimeter system. Remote Sens Environ 233: 111325. https://doi.org/10.1016/j.rse.2019.111325
30. Neuenschwander A, Guenther E, White JC, Duncanson L, Montesano P (2020) Validation of ICESat-2 terrain and canopy heights in boreal forests. Remote Sens Environ 251: 112110. https://doi.org/10.1016/j.rse.2020.112110
31. Bhardwaj A (2022) Assessment of FABDEM on the Different Types of Topographic Regions in India Using Differential GPS Data. Eng. Proc. 2022, 27 (1): 79; https://doi.org/10.3390/ecsa-9-13368
32. Xu C, Fu H, Yang J, Wang L (2022) Assessment of the Relationship between Land Use and Flood Risk Based on a Coupled Hydrological–Hydraulic Model: A Case Study of Zhaojue River Basin in Southwestern China. Land 11 (8): 1182. https://doi.org/10.3390/land11081182
33. Liu K, Song C, Ke L, Jiang L, Pan Y, Ma R (2019) Global open-access DEM performances in Earth's most rugged region High Mountain Asia: A multi-level assessment. Geomorphology 338: 16-26. https://doi.org/10.1016/j.geomorph.2019.04.012
34. Guan L, Pan H, Zou S, Hu J, Zhu X, Zhou P (2020) The impact of horizontal errors on the accuracy of freely available Digital Elevation Models (DEMs). International J Remote Sens 41 (19): 7383-99. https://doi.org/10.1080/01431161.2020.1759840
35. Long NQ, Goyal R, Bui LK, Bui XN (2020) Assessment of Global Digital Height Models over Quang Ninh Province, Vietnam. In: Proceedings of the International Conference on Innovations for Sustainable and Responsible Mining, Volume 1. Springer, Cham, pp. 1-12.
36. Preety K, Prasad AK, Varma AK, El-Askary H (2022) Accuracy assessment, comparative performance, and enhancement of public domain digital elevation models (aster 30 m, srtm 30 m, cartosat 30 m, srtm 90 m, merit 90 m, and tandem-x 90 m) using dgps. Remote Sens 14 (6): 1334. https://doi.org/10.3390/rs14061334
37. Archer L, Neal JC, Bates PD, House JI (2018) Comparing TanDEM-X data with frequently used DEMs for flood inundation modeling. Water Resour Res 54 (12): 10-205. https://doi.org/10.1029/2018WR023688
38. Xu K, Fang J, Fang Y, Sun Q, Wu C, Liu M (2021) The importance of Digital Elevation Model selection in flood simulation and a proposed method to reduce DEM errors: A case study in Shanghai. Int J Disaster Risk Sci 12: 890-902.
39. Garrote J (2022) Free global DEMs and flood modelling—A comparison analysis for the January 2015 flooding event in Mocuba City (Mozambique). Water 14 (2): 176. https://doi.org/10.3390/w14020176
40. Nguyen BQ, Vo ND, Le MH, Nguyen QD, Lakshmi V, Bolten JD (2023) Quantification of global Digital Elevation Model (DEM)–A case study of the newly released NASADEM for a river basin in Central Vietnam. J Hydrol: Reg Stud 45: 101282. https://doi.org/10.1016/j.ejrh.2022.101282
41. Maung WS, Sasaki J (2020) Assessing the natural recovery of mangroves after human disturbance using neural network classification and Sentinel-2 imagery in Wunbaik Mangrove Forest, Myanmar. Remote Sens 13 (1): 52. https://doi.org/10.3390/rs13010052
42. Gautam MK, Tripathi AK, Manhas RK (2011) Assessment of critical loads in tropical sal (Shorea robusta Gaertn. F.) forests of Doon valley Himalayas, India. Water Air Soil Pollut 218 (1): 235–264. https://doi.org/10.1007/s11270-010-0638-z
43. Khare S, Latifi H, Ghosh SK (2018) Multi-scale assessment of invasive plant species diversity using Pléiades 1A, RapidEye and Landsat-8 data. Geocarto Int 33 (7): 681-98. https://doi.org/10.1080/10106049.2017.1289562
44. Ramachandra TV, Kamakshi G, Shruthi BV (2004). Bioresource status in Karnataka. Renew Sust Energ Rev 8 (1): 1-47. https://doi.org/10.1016/j.rser.2003.09.001
45. Neumann TA, Brenner A, Hancock D, Robbins J, Saba J, Harbeck K, Gibbons A, Lee J, Luthcke SB, Rebold T, et al (2021) ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 5 Boulder, Colorado USA. https://doi.org/10.5067/ATLAS/ATL03.005
46. Xiang J, Li H, Zhao J, Cai X, Li P (2021) Inland water level measurement from space-borne laser altimetry: Validation and comparison of three missions over the Great Lakes and lower Mississippi River. J Hydrol 597: 126312. https://doi.org/10.1016/j.jhydrol.2021.126312
47. Popescu SC, Zhou T, Nelson R, Neuenschwander A, Sheridan R, Narine L, Walsh KM (2018) Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data. Remote Sens Environ 208: 154-70. https://doi.org/10.1016/j.rse.2018.02.019
48. Xie H, Sun Y, Xu Q, Li B, Guo Y, Liu X, Huang P, Tong X (2020) Converting along-track photons into a point-region quadtree to assist with ICESat-2-based canopy cover and ground photon detection. Int J Appl Earth Obs Geoinf 112: 102872. https://doi.org/10.1016/j.jag.2022.102872
49. Narine L, Malambo L, Popescu S (2022) Characterizing canopy cover with ICESat-2: A case study of southern forests in Texas and Alabama, USA. Remote Sens Environ 281: 113242. https://doi.org/10.1016/j.rse.2022.113242
50. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31 (3): 264-323. https://doi.org/10.1145/331499.331504
51. Mann AK, Kaur N (2013) Review paper on clustering techniques. Glob J Comput Sci Technol 13 (5): 43-47.
52. Ester M, Kriegel HP, Sander J, Xu X. (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd 96 (34): 226-231.
53. Ali T, Asghar S, Sajid NA (2010) Critical analysis of DBSCAN variations. In International Conference on Information and Emerging Technologies, IEEE, pp 1-6. https://doi.org/10.1109/ICIET.2010.5625720
54. Xie C, Chen P, Pan D, Zhong C, Zhang Z (2021) Improved filtering of ICESat-2 lidar data for nearshore bathymetry estimation using sentinel-2 imagery. Remote Sens 13: 4303. https://doi.org/10.3390/rs13214303
55. Huang J, Xing Y, You H, Qin L, Tian J, Ma J (2019) Particle swarm optimization-based noise filtering algorithm for photon cloud data in forest area. Remote Sens 11 (8): 980. https://doi.org/10.3390/rs11080980
56. Herzfeld UC, McDonald BW, Wallin BF, Neumann TA, Markus T, Brenner A, Field C (2013) Algorithm for detection of ground and canopy cover in micropulse photon-counting lidar altimeter data in preparation for the ICESat-2 mission. IEEE Trans Geosci Remote Sens 52 (4): 2109-25. https;//doi.org/10.1109/TGRS.2013.2258350
57. Neuenschwander AL, Magruder LA (2019) Canopy and terrain height retrievals with ICESat-2: A first look. Remote Sens 11 (14): 1721. https://doi.org/10.3390/rs11141721
58. Brunt KM, Neumann TA, Smith BE (2019) Assessment of ICESat-2 ice sheet surface heights, based on comparisons over the interior of the Antarctic ice sheet. Geophys Res Lett 46 (22): 13072-8. https://doi.org/10.1029/2019GL084886
59. Wang C, Zhu X, Nie S, Xi X, Li D, Zheng W, Chen S (2019) Ground elevation accuracy verification of ICESat-2 data: A case study in Alaska, USA. Opt Express 27 (26): 38168-79. https://doi.org/10.1364/OE.27.038168
60. Xing Y, Huang J, Gruen A, Qin L (2020) Assessing the performance of ICESat-2/ATLAS multi-channel photon data for estimating ground topography in forested terrain. Remote Sens 12 (13): 2084. https://doi.org/10.3390/rs12132084
61. Lian W, Zhang G, Cui H, Chen Z, Wei S, Zhu C, Xie Z (2022) Extraction of high-accuracy control points using ICESat-2 ATL03 in urban areas. Int J Appl Earth Obs Geoinf 115: 103116. https://doi.org/10.1016/j.jag.2022.103116
62. Baugh CA, Bates PD, Schumann G, Trigg MA (2013) SRTM vegetation removal and hydrodynamic modeling accuracy. Water Resour Res 49 (9): 5276-89. https://doi.org/10.1002/wrcr.20412
63. O'Loughlin FE, Paiva RC, Durand M, Alsdorf DE, Bates PD (2016) A multi-sensor approach towards a global vegetation corrected SRTM DEM product. Remote Sens Environ 182: 49-59. https://doi.org/10.1016/j.rse.2016.04.018
64. Schutz BE, Zwally HJ, Shuman CA, Hancock D, DiMarzio JP (2005) Overview of the ICESat mission. Geophys Res Lett 32 (21): L21S01. https://doi.org/10.1029/2005GL024009
65. Abshire JB, Sun X, Riris H, Sirota JM, McGarry JF, Palm S, Yi D, Liiva P (2005) Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance. Geophys Res Lett 32 (21): L21S02. https://doi.org/10.1029/2005GL024028
66. Giribabu D, Kumar P, Mathew J, Sharma KP, Murthy YK (2013) DEM generation using Cartosat-1 stereo data: issues and complexities in Himalayan terrain. Eur J Remote Sens 46 (1): 431-43. https://doi.org/10.5721/EuJRS20134625
67. Fujita K, Suzuki R, Nuimura T, Sakai A (2008). Performance of ASTER and SRTM DEMs, and their potential for assessing glacial lakes in the Lunana region, Bhutan Himalaya. J Glaciol 54 (185): 220-8. https://doi.org/10.3189/002214308784886162
68. Kolecka N, Kozak J (2014) Assessment of the accuracy of SRTM C-and X-Band high mountain elevation data: A case study of the Polish Tatra Mountains. Pure Appl Geophys 171: 897-912. https://doi.org/10.1007/s00024-013-0695-5
69. Mukul M, Srivastava V, Jade S, Mukul M (2017) Uncertainties in the shuttle radar topography mission (SRTM) Heights: Insights from the indian Himalaya and Peninsula. Sci Rep 7 (1): 1-0. https://doi.org/10.1038/srep41672
70. Kramm T, Hoffmeister D (2021) Comprehensive vertical accuracy analysis of freely available DEMs for different landscape types of the Rur catchment, Germany. Geocarto Int. https://doi.org/10.1080/10106049.2021.1984588
71. Gupta RD, Singh MK, Snehmani S, Ganju A (2014) Validation of SRTM X band DEM over Himalayan Mountain. Int Arch Photogramm Remote Sens Spat Inf Sci 40 (4): 71.
72. Harding DJ, Carabajal CC (2005) ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophys Res Lett 32 (21). https://doi.org/10.1029/2005GL023471
73. Lefsky MA, Harding DJ, Keller M, Cohen WB, Carabajal CC, Del Bom Espirito-Santo F, Hunter MO, de Oliveira Jr R (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32 (22). https://doi.org/10.1029/2005GL023971
74. Hayashi M, Saigusa N, Oguma H, Yamagata Y (2013) Forest canopy height estimation using ICESat/GLAS data and error factor analysis in Hokkaido, Japan. ISPRS J Photogramm Remote Sens 81: 12-8. https://doi.org/10.1016/j.isprsjprs.2013.04.004
75. Fayad I, Baghdadi N, Bailly JS, Barbier N, Gond V, El Hajj M, Fabre F, Bourgine B (2014) Canopy height estimation in French Guiana with LiDAR ICESat/GLAS data using principal component analysis and random forest regressions. Remote Sens 6 (12): 11883-914. https://doi.org/10.3390/rs61211883
76. Pourrahmati MR, Baghdadi NN, Darvishsefat AA, Namiranian M, Fayad I, Bailly JS, Gond V (2015) Capability of GLAS/ICESat data to estimate forest canopy height and volume in mountainous forests of Iran. IEEE J Sel Top Appl Earth Obs Remote Sens 8 (11): 5246-61. https://doi.org/10.1109/JSTARS.2015.2478478
77. Mahoney C, Hopkinson C, Held A, Kljun N, Van Gorsel E (2016) ICESat/GLAS canopy height sensitivity inferred from airborne LiDAR. Photogramm Eng Remote Sensing 82 (5): 351-63. https://doi.org/10.1016/S0099-1112(16)82017-0
78. Chai LT, Wong CJ, James D, Loh HY, Liew JJ, Wong WV, Phua MH (2022) Vertical accuracy comparison of multi-source Digital Elevation Model (DEM) with Airborne Light Detection and Ranging (LiDAR). In: IOP Conference Series: Earth and Environmental Science 2022 Jun 1 (Vol. 1053, No. 1, p. 012025). IOP Publishing. https://doi.org/10.1088/1755-1315/1053/1/012025