American Journal of Quantum Chemistry and Molecular Spectroscopy

Archive

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Configurational and Conformational Analysis of 5-deoxy-5-iodo-α,β-D-ribose with 3-Sphere Approach

Configurational and conformational analysis with 3-Sphere approach on selective iodination of α, β-methyl D-ribofuranose (2-α:2-β) with iodotriphenilphosphonium iodide complex [Ph3P+I]I- generated in situ, under RT, reflux, microwave and sonochemistry. Introduction of the unit and hypersphere trigonometric equations, under Hopf fibration and Lie algebra theories, on Lambert-Wu methods enable calculation of the dihedral angles from NMR data (13C chemical shift, vicinal coupling constant 3JHH[Hz]) and the ratio of anomers. The conformation/configuration at anomeric position is cis: trans with axial:axial 3-α:3-β (3JH1H2 3 or 4.5:0[Hz]) or equatorial:axial 3-α:3-β (3JH1H2 6 or 4.5:0[Hz]) as state based on dihedral angles θH1H2[deg], recorded carbon chemical shift δCn[deg] and VISION molecular models. The conformation of 3-β anomer is 3E, and in case of 3-α anomer 3E on Altona’s map, the last having the succession of sign (+, -, -) with θH3H4α trans-ee, or alternatively 32T conformation having the succession of sign (-, +, -) with θH3H4α trans-aa. An equilibrium between 3E α and 32T α was confirmed by 3JH1H2 of 4.5[Hz], i.e. negative θH1H2α with 32T and equatorial OCH3, or positive θH1H2α with 3E and axial OCH3. The APT experiment (attached proton test) demonstrated the formation of tetrahydro 2H-pyran-2-ol as side product after selective iodination of methyl 5-deoxy-β-D-ribofuranoside 2-β.

3-Sphere, Dihedral Angles, Configuration, Conformation, Selective Iodination

APA Style

Carmen-Irena Mitan, Emeric Bartha, Anca Hirtopeanu, Carmen Stavarache, Constantin Draghici, et al. (2023). Configurational and Conformational Analysis of 5-deoxy-5-iodo-α,β-D-ribose with 3-Sphere Approach. American Journal of Quantum Chemistry and Molecular Spectroscopy, 7(1), 1-8. https://doi.org/10.11648/j.ajqcms.20230701.11

ACS Style

Carmen-Irena Mitan; Emeric Bartha; Anca Hirtopeanu; Carmen Stavarache; Constantin Draghici, et al. Configurational and Conformational Analysis of 5-deoxy-5-iodo-α,β-D-ribose with 3-Sphere Approach. Am. J. Quantum Chem. Mol. Spectrosc. 2023, 7(1), 1-8. doi: 10.11648/j.ajqcms.20230701.11

AMA Style

Carmen-Irena Mitan, Emeric Bartha, Anca Hirtopeanu, Carmen Stavarache, Constantin Draghici, et al. Configurational and Conformational Analysis of 5-deoxy-5-iodo-α,β-D-ribose with 3-Sphere Approach. Am J Quantum Chem Mol Spectrosc. 2023;7(1):1-8. doi: 10.11648/j.ajqcms.20230701.11

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. J. B. Lambert, Structural chemistry in solution. R value, Acc. Chem. Res. 1971, 4, 87; doi.org/10.1021/ar50039aoo2.
2. H. R. Buys, Conformation of nonaromatic ring compounds LIVϯ: The calculation of dihedral angles from vicinal coupling constants is six membered ring compounds, Recl. Trav. Chim. Pays-Bas 1969, 1003; doi.org/10.1002/recl.19690880814.
3. J. B. Lambert, J. J. Papay, E. S. Magyar, M. K. Neuberg, Conformations of five membered rings. Limitations of the R-value methods, J. Am. Chem. Soc. 1973, 4458; doi.org/10.1021/ja007940073.
4. G. E. Wilson, T. J. Bazzone, Conformational studies of 1,3-thiazolidines, J. Am. Chem. Soc. 1974, 1465; doi.org/10.1021/ja00812a032.
5. A. Wu, D. Cremer, A. A. Auer, J. Gauss, Extension of the Karplus relationships for NMR Spin-Spin coupling constants to nonplanar ring systems: Pseudorotation of cyclopentane, J. Phys. Chem. A. 2002, 106, 657; doi.org/10.1021/jp013160l.
6. C.-I. Mitan, E. Bartha, A. Hartopeanu, C. Stavarache, C. Draghici, M. T. Caproiu, M. Manganu, I. Man, L. Tarko, F. Teodorescu, C. Deleanu, Anomeric ratio and dihedral angles of α,β-iodo-methyl-D-ribofuranose, ACS National Meeting, San Francisco, CA, 16-20 August 2020, ANYL 49 (poster) ID: 3396478; Demo - Morressier. Publisher: American Chemical Society, Washington, D. C; doi.10.1021/Scimeetings.Oc00571.
7. E. Fischer Ber. 1893, 26, 2400; doi.10.1002/cber.18930260327.
8. E. D. Dangerfield, S. A. Gulab, C. H. Plunkett, M. S. M. Timmer, B. L. Stocker, Carbohydrate Research 2010, 345, 1360; doi.org/10.1016/j.carres.2010.03.016.
9. P. J. Garegg, B. Samuelsson, Novel reagent for converting a hydroxy group into an iodo-group in carbohydrates with inversion of configuration, Perkin Trans 1, 1980, 2866; doi.org/10.1039/P19800002866.
10. P. R. Skaanderup, C. S. Poulsen, L. Hyldtoft, M. R. Jørgensen, R. Madsen, Regioselective conversion of primary alcohols into iodides in unprotected methyl furanosides and pyranosides, Synthesis 2002, 12, 1721; DOI: 10.1055/1-2002-33641.
11. C.-I. Mitan, E. Bartha, P. Filip, C. Draghici, M. T. Caproiu, R. Moriarty, Calculation of the dihedral angles of 1-α,-β-R-5-O-methanesulfonyl-2,3-O-isopropilidene-L-lyxose from NMR data with 3-sphere approach and Lambert-Wu R value. ACS National Meeting, Atlanta, GA, 22 - 26 August 2021, CARB (poster) ID: 3582748; Demo - Morressier. Publisher: American Chemical Society, Washington, D. C; doi.10.1021/Scimeetings.1c00922.
12. F.-H. Hu, L.-S. Wang, S.-F. Cai, Solubilities of triphenylphosphibe oxide in selected solvents, J. Chem. Eng. Data 2009, 54, 1382; doi.org/10.1021/je800842z.
13. J. Kennedy, J. Wu, K. Drew, I. Carmichael, A. S. Serianni, Carbohydrate reaction intermediates: Effect of ring oxygen protonation on the structure of conformation of aldofuranosyl rings, J. Am. Chem. Soc. 1997, 119, 8933; doi.org/10.1021/ja963727p.
14. J. L. Liras, V. M. Lynch, E. V. Anslyn, The ratio between endocyclic and exocyclic cleavage of pyranoside acetals is dependent upon the anomer, the temperature, the aglycon group, and the solvent, J. Am. Chem. Soc. 1997, 119, 8191; doi.org/10.1021/ja963807t.
15. O. St.-Jean, M. Prévost, Y. Guidon, Study of the endocyclic versus exocyclic C-O bond cleavage path ways of α- and β-methyl furanosides, J. Org. Chem. 2013, 2935; doi.org/10.1021/jo3027438.
16. R. Caputo, H. Kunz, D. Mastroianni, G. Palumbo, S. Pedatella, F. Solla, Eur. J. Chem. 1999, 3147; doi.org/10.1002/(SICI)1099-0690.
17. A. J. Hoog, Carbon-13 nuclear magnetic resonance spectra of some 2-substitute tetrahydropyrans, Organic Magnetic Resonance, 1974, 6, 233; doi.org/10.1002/mrc.1270060410.
18. R. J. Andersen, R. M. Dixon, B. T. Golding, Alkylcobalamins: formation by enantioselective alkylation of cob(I)alamin, 1H NMR spectra, and conformational analysis of the alkyl group, J. Organomet. Chem. 1992, 437, 227; doi.org/10.1016/0022-328x(92)83446-O.
19. M. J. Han, K. S. Yoo, Y. H. Kim, J. Y. Chang, The catalytic activity of ribose containing polymers for the hydrolysi of phosphordiester and cleavage of nucleic acid, Tetrahedron Lett, 2002, 43 (32), 5597; doi.org/10.1016/50040-4039(02)01123-1.
20. B. G. Roy, A. Roy, B. Achari, S. B. Mandal, A simple one-pot entry to cyclic ethers of varied ring sizes from diols via phosphonium ion induced iodination and base catalyzed Williamson etherification, Tetrahedron Lett. 2006, 47, 7783; doi.org/10.1016/j.tetlet.2006.08.090.
21. B. Classon, Z. Liu, New halogenation reagent systems useful for the mild one-step conversion of alcohols into iodides or bromides, J. Org. Chem. 1988, 53, 6126; doi.org/10.1021/jo00261a032.
22. N. K. Kochetkov, A. I. Usov, The reaction of carbohydrates with triphenyl phosphite methiodide and related compounds, Tetrahedron 1963, 19, 973-983; doi.org/10.1016/50040-4020/01799352.
23. C.-I. Mitan, E. Bartha, P. Filip, C. Draghici, M. T. Caproiu, R. M. Moriarty, Two isomers with trans-aa5,2 stereochemistry are calculated with 3-sphere trigonometric equations approach at circle inversion motion from NMR data. ACS National Meeting in Chicago, IL, August 21- 25, 2022, CARB 3717658, 22 august 2022, doi.org/10.1021/scimeetings.2c00523.
24. E. Bartha, C.-I. Mitan, C. Draghici, M. T. Caproiu, P. Filip, R. Moriarty, Program for prediction dihedral angle from vicinal coupling constant with 3-sphere approach, Rev. Roum. Chim. 2021, 66, 178-183; DOI: 10.33224/rrch.2021.66.2.08 (Eng).
25. C.-I. Mitan, E. Bartha, C. Draghici, M. T. Caproiu, P. Filip, R. M. Moriarty, Hopf fibration on relationship between dihedral angle θHnHn+1[deg] and vicinal angle ϕ[deg], angles calculated from NMR data with 3-sphere approach and Java Script, SciencePG 2022, 10, 21; DOI: 10.11648/j.sjc.20221001.13 (Eng).
26. P. C. Kline, A. S. Seriani, 13C-Enriched ribonucleosides: synthesis and applications of 13C-1H and 13C-13C spin coupling constants to assess furanose and N-glycoside bond conformations, J. Am. Chem. Soc. 1990, 112, 7373; doi.org./10 1021/ja001760043.