American Journal of Physics and Applications

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Research Article |

Electronic and Mechanical Properties of Chemical Bonds (A-O & B-O) in Cubic Phase A+2B+4O3 Perovskite Oxides

In the present manuscript, electronic and mechanical properties of a series of ABO3 (A→ alkaline earth metals, B→ transition metal) perovskites are presented. Using the plasma oscillation theory of solids, empirical relations are proposed for computation of the homopolar/ covalent gap (Eh) and heteropolar/ ionic gap (Ec) of the chemical bonds A-O and B-O in the cubic phase of ABO3 perovskites. To examine the validity of our calculated results, the average energy gap (Eg), Phillips ionicity (fi) and covalence (fc) of the chemical bonds of these perovskites are investigated. The dielectric constant (ε) and refractive index (n) are computed and the results obtained are analyzed in comparison to results obtained by different researchers and these are found in fairly good agreement. Electronic polarizability (αtotal) was calculated through a well-known phenomenological Clausius-Mossotti relation and the values were found in accord with the results obtained from the Chemla’s relation. Further, a simple Neumann scaling approach has been employed to estimate the bulk modulus of these materials using the Phillips ionicity model. Present estimations are found in excellent agreement with the available experimental reports as compared to other such previous theoretical reports. This report supports the composition of new perovskites and hereto perceives their other properties for optoelectronics, photonics, mechanical and thermoelectric devices.

Perovskites, Electronic Properties, Mechanical Properties, Plasma Energy

APA Style

Yadav, N., Singh Yadav, D., Varshney, P., Chandra Gupta, R. (2023). Electronic and Mechanical Properties of Chemical Bonds (A-O & B-O) in Cubic Phase A+2B+4O3 Perovskite Oxides. American Journal of Physics and Applications, 11(4), 80-88. https://doi.org/10.11648/j.ajpa.20231104.11

ACS Style

Yadav, N.; Singh Yadav, D.; Varshney, P.; Chandra Gupta, R. Electronic and Mechanical Properties of Chemical Bonds (A-O & B-O) in Cubic Phase A+2B+4O3 Perovskite Oxides. Am. J. Phys. Appl. 2023, 11(4), 80-88. doi: 10.11648/j.ajpa.20231104.11

AMA Style

Yadav N, Singh Yadav D, Varshney P, Chandra Gupta R. Electronic and Mechanical Properties of Chemical Bonds (A-O & B-O) in Cubic Phase A+2B+4O3 Perovskite Oxides. Am J Phys Appl. 2023;11(4):80-88. doi: 10.11648/j.ajpa.20231104.11

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. M. Hasan, S. Nasrin, M. N. Islam, A. K. M. Akther Hossain, First-principles insights into the electronic, optical, mechanical, and thermodynamic properties of lead-free cubic ABO3 [A = Ba, Ca, Sr; B = Ce, Ti, Zr] perovskites AIP Advances (2022), 12, 085327. https://doi.org/10.1063/5.0104191.
2. S. Cabuk, Magnetic, electronic and mechanical properties of SeXO3 (X = Mn, Ni) with the LSDA +U framework, Journal of Alloys and Compounds (2021) 850, 156674. https://doi.org/10.1016/j.jallcom.2020.156674.
3. P. M. Bulemo, and I. D. Kim, Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors, Journal of the Korean Ceramic Society 2020 57(1), 24-39. https://doi.org/10.1007/s43207-019-00003-1.
4. N. Wagner, R. Seshadri, and J. M. Rondinelli, Property control from polyhedral connectivity in ABO3 oxides, Phys. Rev. B (2019) 100, 064101. https://doi.org/10.1103/PhysRevB.100.064101.
5. A. I. Lebedev, Ab initio calculations of phonon spectra in ATiO3 perovskite crystals (A = Ca, Sr, Ba, Ra, Cd, Zn, Mg, Ge, Sn, Pb), Phys. Solid State (2009) 51, 362. https://doi.org/10.1134/S1063783409020279.
6. H. P. Rooksby, Compounds of the Structural Type of Calcium Titanate, Nature, (1945) 155 484. https://doi.org/10.1038/155484a0.
7. J. F. Scott, C. A. Pazde, Aurauj et al., J. Appl. Phys. 70 (1981) 382.
8. S. Y. Lee, M. C. C Costodio, H. J. Lim et al., Growth and characterization of Pb(Mg1/3Nb2/3)O3 and Pb(Mg1/3Nb2/3)O3–PbTiO3 thin films using solid source MOCVD techniques J. Cryst. Growth, (2001) 226, 247. https://doi.org/10.1016/S0022-0248(01)00796-5.
9. Yuchen Liu, Bin Liu, Huimin Xiang, Yanchun Zhou, Hongqiang Nian, Hongfei Chen, Guang Yang, Yanfeng Gao, Theoretical investigation of anisotropic mechanical and thermal properties of ABO3 (A=Sr, Ba; B=Ti, Zr, Hf) perovskites, J. American Ceramic Society 10 (2018) 1. https://doi.org/10.1111/jace.15502
10. Q. Mahmood, Bakhtiar Ul Haq, M. Yaseen, Shahid M. Ramay, Muhammad Gul Bahar Ashiq, Asif Mahmood, The first-principle study of mechanical, optical and thermoelectric properties of SnZrO3 and SnHfO3 for renewable energy applications, Solid State Communications 292 (2019) 17. https://doi.org/10.1016/j.ssc.2019.01.011.
11. G. Gupta, T. Tautiyal, S. Auluck, Optical properties of the compounds BaTiO3 and SrTiO3, Phys. Rev. B. (2004), 69, 052101. https://doi.org/10.1103/PhysRevB.69.052101.
12. M. P. Moret, M. A. C. Devillers et al., Optical properties of PbTiO3, Pb(ZrxTi1−x)O3 and PbZrO3, films deposited by metalorganic chemical vapor on SrTiO3, J. Applied Physics 92 (2002) 468. https://doi.org/10.1063/1.1486048.
13. D. Bauerle, W. Braum, V. Saile, Physica B 29 (1978) 179.
14. S. Pikunov, E. Heifets R.I. Eglitis, G. Borstel, Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study, Compt. Mater. Sci. (2004) 29 165. doi: 10.1016/j.commatsci.2003.08.036.
15. S. Saha, T. P. Shina, A. Mookerjee; Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3, Phys. Rrev. B (2000) 62, 8828. https://doi.org/10.1103/PhysRevB.62.8828.
16. M. Kamruzzaman, M. A. Helal, I. E. Ara et al., A comparative study based on the first principles calculations of ATiO3 (A = Ba, Ca, Pb and Sr) perovskite structure, Indian J Phys (2016) 90: 1105-1113. DOI 10.1007/s12648-016-0848-3.
17. S. Y. Liu, M. Sun, S. Zhang, S. Liu, D. J. Li, Z. Niu, Y. Li, and S. Wang, First-principles study of thermodynamic miscibility, structures, and optical properties of Cs2Sn(X1−xYx)6 (X,Y = I, Br, Cl) lead-free perovskite solar cells, Appl. Phys. Lett. (2021) 118, 141903. https://doi.org/10.1063/5.0043809.
18. Tariq Usman, G. Murtaza, Haijun Luo, Asif Mahmood, GGA and GGA+U Study of Rare Earth-Based Perovskites in Cubic Phase J. Superhard Nov. Magn. (2016) 10, 3953. DOI: 10.1007/s10948-016-3953-9.
19. M. Rashid, Z. Abbas, M. Yasheen et al., J. Supercond. Nov. Magn. 4 (2017).
20. Bin Amin, Farzana Majid, M. Bilal Saddique,. M. Rashid, Physical properties of half-metallic AMnO3 (A= Mg, Ca) oxides via ab initio calculations, Compt. Mat. Sci. (2018) 146, 248. DOI: 10.1016/j.commatsci.2018.01.033.
21. Yuchen Liu, Wei Zhang, Banghui Wang, Luchao Sun, Fangzhi Li, Zhenhai Xue, Guohong Zhou, Bin Liu, Hongqiang Nian., Theoretical and experimental investigations on high temperature mechanical and thermal properties of BaZrO3, Ceramic International (2018) 44 16475. https://doi.org/10.1016/j.ceramint.2018.06.064.
22. Rasul Bakhsh Behram, M A Iqbal, Muhammad Rashid, M Atif Sattar, Asif Mahmood, Shahid M Ramay; Ab-initio investigation of AGeO3 (A=Ca, Sr) compounds via Tran–Blaha-modified Becke–Johnson exchange potential, Chin. Phys. B (2017) 26(11), 116103. DOI: 10.1088/1674-1056/26/11/116103.
23. Narasak Pandech, Kanoknan Sarasamak and Sukit Limpijumnong, Elastic properties of perovskite ATiO3 (A = Be, Mg, Ca, Sr, and Ba) and PbBO3 (B = Ti, Zr, and Hf): First principles calculations, J. Applied Physics (2015) 117, 174108. http://dx.doi.org/10.1063/1.4919837.
24. Rehan Ullah, Malak Azmat Ali, Khadijah Mohammed Saleh Katubi, Norah Salem Alsaiari, Khamael M. Abualnaja, A.S. Verma, G. Murtaza, Modeling of bulk modulus of A2BX6 cubic crystals (A = K, Cs, Rb, TI, NH4; B = tetravalent cation; X = F, Cl, Br, I) using semi-empirical model, Inorganic Chemistry Communication (2022) 139, 109315. https://doi.org/10.1016/j.inoche.2022.109315.
25. A. S. Verma, Vijay K Jindal, Lattice Constant of Cubic Perovskites, J. Alloys and Compounds 485 (2009) 514. DOI: 10.1016/j.jallcom.2009.06.001.
26. M. Hasan and A. K. M. Akther Hossain, “Structural, electronic and optical properties of strontium and nickel co-doped BaTiO3: A DFT based study,” Computational Condensed Matter (2021) 28, e00578. https://doi.org/10.1016/j.cocom.2021.e00578.
27. J. C. Phillips, J. A. Van-Vechten, Dielectric Classification of Crystal Structures, Ionization Potentials, and Band Structures, Phys. Rev. Lett. (1969) 22, 705. https://doi.org/10.1103/PhysRevLett.22.705.
28. J. A. Van-Vechten, Quantum Dielectric Theory of Electronegativity in Covalent Systems. I. Electronic Dielectric Constant, Phys. Rev. B 182 (1969) 891. https://doi.org/10.1103/PhysRev.182.891.
29. B. F. Levine, Bond susceptibilities and ionicities in complex crystal structures, J. Chem. Phys. 59 (1973) 1463. https://doi.org/10.1063/1.1680204.
30. D. S. Yadav, S. P. Singh, Electronic properties of aluminum, gallium and indium pnictides, Phys. Scr. (2010) 82(6), 065705. DOI: 10.1088/0031-8949/82/06/065705.
31. M. Rabiei et al., Measurement Modulus of Elasticity Related to the Atomic Density of Planes in Unit Cell of Crystal Lattices, Materials 13 (2020) 4380. DOI: 10.3390/ma13194380.
32. D. S. Yadav, A. S. Verma, Electronic, optical and mechanical properties of AIIBVI semiconductors, International Journal of Modern Physics B 26 (2012) 1250020. https://doi.org/10.1142/S0217979212500208.
33. Shi-Yu Liu, Shuoxin Zhang, Shiyang Liu, De-Jun Li, Yaping Li, Sanwu Wang, Phase stability, mechanical properties and melting points of high-entropy quaternary metal carbides from first-principles, Journal European Ceramic Society. (2021) 41(13), 6267. https://doi.org/10.1016/j.jeurceramsoc.2021.05.022.
34. A. S. Verma, Electronic and optical properties of rare-earth chalcogenides and pnictides, Afr. Phys. Rev. 3 (2009) 11.
35. V. K. Srivastava, Ionicity in AIIB, Phys. Rev. B Condens Matter (1987) 36(9), 5044, DOI: 10.1103/physrevb.36.5044.
36. V. P. Gupta, V. K. Srivastava, P. N. L. Gupta, Electronic properties of chalcopyrites, J. Phys. Chem. Solids 42 (1981) 1079. https://doi.org/10.1016/0022-3697(81)90133-5.
37. O. P. Singh V. P. Gupta Phys. State Solidi B 137 (1986) 97.
38. V. K. Srivastava, Homopolar and heteropolar energy gaps in zincblende crystals J. Phys. C, Solid State Physics (1986) 19, 5689. DOI 10.1088/0022-3719/19/28/019.
39. R. C. Gupta, K. Singh, A. S. Verma, Empirical Relation for Electronic and Optical Properties of Binary Tetrahedral Semiconductors, East Eur. J. Phys. 1 (2021) 89. DOI: 10.26565/2312-4334-2021-1-11.
40. V. Kumar, S. Chandra, J. K. Singh, Electronic, elastic and optical properties of divalent (R+2X) and trivalent (R+3X) rare earth monochalcogenides, Ind. J. Phys. (2017) 91 875-881, https://doi.org/10.1007/s12648-017-0983-5
41. Faming Gao, Julong He, Erdong Wu, Shimin Liu, Dongli Yu, Dongchun Li, Siyuan Zhang, and Yongjun Tian, Hardness of Covalent Crystals, Phys. Rev. Lett. (2003) 91, 015502. https://doi.org/10.1103/PhysRevLett.91.015502.
42. F. M. Gao, R Xu, K. Liu, Origin of hardness in nitride spinel materials, Phys. Rev. B (2005) 71, 052103. https://doi.org/10.1103/PhysRevB.71.052103.
43. A. S. Verma, S R Bharadwaj, Electronic and optical properties of zinc blende and complex crystal structured solids, Phys. State Solidi B (2006) 243(15), 4025-4034. https://doi.org/10.1002/pssb.200844072
44. D. S. Yadav, Electronic and mechanical properties of rare earth monochalcogenides, J. Alloys and Comp. 537 (2012) 250. https://doi.org/10.1016/j.jallcom.2012.05.016D. S. Yadav, D. V. Singh, Phys. Scr. 85 (2012) 015701.
45. D. S. Yadav, D. V. Singh, Static and dynamical properties of II–VI and III–V group binary solids, Phys. Scr. (2012) 85, 015701. DOI 10.1088/0031-8949/85/01/015701.
46. H. Neumann, Kristall imcl Tcchnik. (1980) 15, 849.
47. S. Tariq, A. Ahmed, S. Saad, S. Tariq, Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: A DFT study, AIP Advances (2015) 5, 077111. https://doi.org/10.1063/1.4926437.
48. Md. L. Ali, Md. A Rahaman, Variation of the Physical Properties of Four Transition Metal Oxides SrTMO3 (TM = Rh, Ti, Mo, Zr) Under Pressure: An Ab Initio Study J. Adv. Phys. (2017) 6(2), 197. https://doi.org/10.1166/jap.2017.1329.
49. R. Terki, H. Feraoun, G. Bertrand, H. Aourag, Full potential calculation of structural, elastic and electronic properties of BaZrO3 and SrZrO3, Phys. Status Solidi B (2005) 242(5), 1054-1062. DOI: 10.1002/pssb.200402142.
50. L. Bornstein, T. Mitsui, S. Nomura, Crystal and Solid State Physics, vol. 16, Springer-Verlag, Berlin (1982).
51. R. D. King-Smith, D. Vanderbilt, First-principles investigation of ferroelectricity in perovskite compounds, Phys. Rev. B (1994) 49, 5828. https://doi.org/10.1103/PhysRevB.49.5828.
52. Khursheed Parrey, Nisha Devi, Rabah Khenata, Shakeel Ahmad, Shakeel Ahmad Khandy, Investigating structure, magneto-electronic, elastic and thermoelectric properties of alkaline earth actinide perovskite oxide (BaBkO3) from first principle calculations, Comp. Cond. Matter (2018) 16, 00340. DOI: 10.1016/j.cocom.2018.e00340.
53. M. Kamruzzaman, M. A. Helal, I. E. Ara, A. K. M. Farid Ul Islam & M. M. Rahaman, A comparative study based on the first principles calculations of ATiO3 (A = Ba, Ca, Pb and Sr) perovskite structure, Ind. J. Phys. 90 (2016) 1105. https://doi.org/10.1007/s12648-016-0848-3.
54. Shaheen Akhtar, Syed Muahmmad Alay-e-Abbas, Javaria Batool, Waqas Zulfiqar, Amel Laref, Ghulam Abbas, Nasir Amin, Investigation of structural, electronic and optical properties of (V+P) -doped BaZrO3 for photocatalytic applications using density functional theory, J. Phys. Chem. Solids (2020) 147, 109662. https://doi.org/10.1016/j.jpcs.2020.109662.
55. M. P. Moret, M. A. C. Devillers, K. Worhoff, P. K. Larsen, Optical properties of PbTiO3, PbZrxTi1-xO3, and PbZrO3 films deposited by metalorganic chemical vapor on SrTiO3, J. Appl. Phys. (2002) 92, 468. https://doi.org/10.1063/1.1486048.
56. J. D. Axe, Apparent Ionic Charges and Vibrational Eigenmodes of BaTiO3 and Other Perovskites, Phys. Rev. 157 (1967) 429. https://doi.org/10.1103/PhysRev.157.429.
57. J. Sun, X. F. Zhou, Y. X. Fan, J. Chen, H. T. Wang, First-principles study of electronic structure and optical properties of heterodiamond BC2, Phys. Rev. B (2006) 73, 045108. https://doi.org/10.1103/PhysRevB.73.045108.
58. S. Tinte and M. G. Stachiotti, Applications of the generalized gradient approximation to ferroelectric perovskites, Phys. Rev. B (1998) 58, 11959. https://doi.org/10.1103/PhysRevB.58.11959.
59. Bin Liu, Yuchen Liu, Changhua Zhu, Huimin Xiang, Hongfei Chen, Luchao Sun, Yanfeng Gao, Yanchun Zhou, Advances on strategies for searching for next generation thermal barrier coating materials, J. Mat. Sci. Technol. 35 (2019) 35(5) 833. https://doi.org/10.1016/j.jmst.2018.11.016.
60. Mehwish K. Butt, Muhammad Yaseen, Ijaz A. Bhatti, Javed Iqbal, Misbah, Adil Murtaza, Munawar Iqbal, Murefah mana AL-Anazy, M. H. Alhossainy, A. Laref, A DFT study of structural, magnetic, elastic and optoelectronic properties of lanthanide based XAlO3 (X=Nd, Gd) compounds, J. Mater. Res. Technol. (2020) 9(6) 16488. https://doi.org/10.1016/j.jmrt.2020.11.055.
61. G. Murtaza, Iftikhar Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqssod, I. Khan, M. Zahid, Investigation of structural and optoelectronic properties of BaThO3, Optical Materials (2011) 33 553. doi: 10.1016/j.optmat.2010.10.052.
62. J. A. Souza, J. P. Rino, A molecular dynamics study of structural and dynamical correlations of CaTiO3Acta Materialia (2011) 59(4) 1409-1423. https://doi.org/10.1016/j.actamat.2010.11.003.
63. B. Ghebouli, M. A. Ghebouli, T. Chihi, M. Fatmi, S. Boucetta, M. Reffas, First-principles study of structural, elastic, electronic and optical properties of SrMO3 (M=Ti and Sn), Solid State Comm. (2009) 149, 2249. https://doi.org/10.1016/j.ssc.2009.09.001.
64. F. Hou, Ab initio calculations of elastic modulus and electronic structures of cubic CaZrO3, Physica B (2008) 403(17) 2624-2628. https://doi.org/10.1016/j.physb.2008.01.025.
65. A. P. Shakya., Electronic structure and elastic properties of ATiO3 (A= Ba, Sr, Ca) perovskites: A first principles study, Ind. J. Pure & Appl. Phys. (2015) 23(2) 102-109.
66. Z. Feng, H. Hu, S. Cui, C. Bai, First-principles study of optical properties of SrZrO3 in cubic phase, Solid State Comm. 148 (2008) 148(9), 472. DOI: 10.1016/j.ssc.2008.08.030.
67. E. Mete, R. Shaltaf, S. Ellialtoglu, Electronic and structural properties of a 4d perovskite: Cubic phase of SrZrO3, Phys. Rev. B (2003) 68, 035119. https://doi.org/10.1103/PhysRevB.68.035119.
68. D. de Ligny, P. Richet, High-temperature heat capacity and thermal expansion of SrTiO3 and SrZrO3 perovskites, Phys. Rev. B (1996) 53, 3013. https://doi.org/10.1103/PhysRevB.53.3013.
69. Djellal Cherrad, D. Maouche, Mounir Reffas, Mounir Reffas. A Benamrani, Structural, elastic, electronic and optical properties of the cubic perovskites CaXO 3 (X = Hf and Sn), Solid State Comm. (2010) 150, 350. DOI: 10.1016/j.ssc.2009.11.048.
70. A Lamichhane and N. M. Ravindra, Energy Gap-Refractive Index Relations in Perovskites, Materials (2020) 13(8), 1917. DOI: 10.3390/ma13081917.
71. Q. Mahmood, Bakhtiar Ul Haq, M. Yaseen, Shahid M. Ramay, Muhammad Gul Bahar Ashiq, Asif Mahmood, The first-principle study of mechanical, optical and thermoelectric properties of SnZrO3 and SnHfO3 for renewable energy applicationsSolid State Comm. (2019) 292, 17-23. https://doi.org/10.1016/j.ssc.2019.01.011.
72. D. R. Penn, Wave-Number-Dependent Dielectric Function of Semiconductors, Phys. Rev. (1962) 128, 2093. https://doi.org/10.1103/PhysRev.128.2093
73. D. S. Chemla, Dielectric Theory of Tetrahedral Solids: Application to Ternary Compounds with Chalcopyrite Structure, Phys. Rev. Lett. (1971) 26, 1441. https://doi.org/10.1103/PhysRevLett.26.1441