American Journal of Energy Engineering

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

An Integrated Assessment of Next Generation PV Technologies

In this study, next generation photovoltaic (PV) materials will be assessed for their viability as the top layer alternatives over crystalline Silicon (c-Si) as the bottom layer in a tandem device architecture. Such a design is critical to ensure effective capture of a broader range of the electromagnetic spectrum, leading to higher value for money and thereby a competitive advantage in the renewable energy market. These evaluations will be conducted through a holistic lens – in understanding not only the science and engineering aspects of a given technology, but through economic viability analyses and considering the ethical, legal, and social implications (ELSI) of it as well. Lastly, with the rapid development of data science – in particular Machine Learning – techniques over the past decade, these new technologies can be smartly modulated to find optimal compositions and fabrication methods that ensure high performance, low cost, and minimal concerns ethically. In the current study, five candidates – CdTe, perovskites, CIGS, CZTS, and a-Si – will be analyzed through these given outlooks and critically gauged against each other to determine their relative strengths and weaknesses. Standard metrics from each outlook domain will be utilized for assessment: from the science and engineering perspective, these will include device stability, degradability, and power conversion efficiency (PCE); price per watt (PPW) and levelized cost of efficiency (LCOE) will be employed for economic viability analyses; acquisition of materials together with toxicity concerns during production and disposal will be probed for ELSI review. It is imperative for the PV industry to adopt this comprehensive approach in its materials’ choices and assessments to ensure a mature and sustained growth.

Next Generation PVs, Solar, Tandem, Economic Viability, Machine Learning, ELSI

APA Style

Joseph Wikar, Nicholas White, Tyler Body, Michael Vullo, Leanna Tse, et al. (2023). An Integrated Assessment of Next Generation PV Technologies. American Journal of Energy Engineering, 11(4), 100-109.

ACS Style

Joseph Wikar; Nicholas White; Tyler Body; Michael Vullo; Leanna Tse, et al. An Integrated Assessment of Next Generation PV Technologies. Am. J. Energy Eng. 2023, 11(4), 100-109. doi: 10.11648/j.ajee.20231104.11

AMA Style

Joseph Wikar, Nicholas White, Tyler Body, Michael Vullo, Leanna Tse, et al. An Integrated Assessment of Next Generation PV Technologies. Am J Energy Eng. 2023;11(4):100-109. doi: 10.11648/j.ajee.20231104.11

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Lu, S., Chen, C., & Tang, J. (2020). Possible top cells for next-generation SI-based tandem solar cells. Frontiers of Optoelectronics, 13 (3), 246–255.
2. Zanatta, A. R. (2022). The Shockley–Queisser Limit and the conversion efficiency of silicon-based solar cells. Results in Optics, 9, 100320.
3. Solar levelized cost of energy analysis. (n. d.). Retrieved April 23, 2023, from
4. Barbato, M., Artegiani, E., Bertoncello, M., Meneghini, M., Trivellin, N., Mantoan, E., Romeo, A., Mura, G., Ortolani, L., Zanoni, E., & Meneghesso, G. (2021). CdTe solar cells: Technology, operation and Reliability. Journal of Physics D: Applied Physics, 54 (33), 333002.
5. Series 7 - A High-Quality Thin Film CadTel Module made in America, for America. (2023). Retrieved September 17, 2023, from
6. Isah, M., Rahman, K. S., Doroody, C., Harif, M. N., Rosly, H. N., Sopian, K., Tiong, S. K., & Amin, N. (2021). Design optimization of CdTe/Si tandem solar cell using different transparent conducting oxides as interconnecting layers. Journal of Alloys and Compounds, 870, 159351.
7. Smith, B., Woodhouse, M., Horowitz, K., Silverman, T., Zuboy, J., & Margolis, R. (2021). PV (PV) Module Technologies: 2020 Benchmark Costs and Technology Evolution Framework Results. Golden, CO: National Renewable Energy Laboratory. NREL/TP-7A40-78173.
8. Centers for Disease Control and Prevention. (2017, April 7). Cadmium factsheet. Centers for Disease Control and Prevention. [Fact Sheet].
9. Hoareau, C. E., Hadibarata, T., & Yılmaz, M. (2022). Occurrence of cadmium in groundwater in China: A Review. Arabian Journal of Geosciences, 15 (17).
10. Kenji, A. (2021, December 27). China to tighten regulations for heavy metals management. Enviliance ASIA. Retrieved June 7, 2023, from
11. Centers for Disease Control and Prevention. (2019, October 30). CDC - NIOSH Pocket Guide to Chemical Hazards - Tellurium. Centers for Disease Control and Prevention.
12. Miller, C. A., Peters, I. M., & Zaveri, S. (2020). (rep.). Thin Film CdTe PVs and the U.S. Energy Transition in 2020 (pp. 9–139). Phoenix, AZ: Quantum Energy and Sustainable Solar Technologies.
13. Manjunath V., Krishna R., Maniarasu S., Ramasamy, E., Shanmugasundaram S., Veerappan G..“Perovskite Solar Cell Architectures.” Perovskite PVs: Basic to Advanced Concepts and Implementation. 89-12. June 22, 2018.
14. Ravi, V. K., Mondal, B., Nawale, V. V., & Nag, A. Don’t Let the Lead Out: New Material Chemistry Approaches for Sustainable Lead Halide Perovskite Solar Cells. ACS Omega. 2020, 5, 46, 29631–29641, Publication Date: November 13, 2020
15. Rana, M. S., Islam, M. M., & Julkarnain, M. (2021). Enhancement in efficiency of CZTS solar cell by using CZTSe BSF Layer. Solar Energy, 226, 272–287.
16. Larramona, G., Choné, C., Meissner, D., Ernits, K., Bras, P., Ren, Y., Martín-Salinas, R., Rodríguez-Villatoro, J. L., Vermang, B., & Brammertz, G. (2020). Stability, reliability, upscaling and possible technological applications of Kesterite Solar Cells. Journal of Physics: Energy, 2 (2), 024009.
17. Wang, A., Chang, N. L., Sun, K., Xue, C., Egan, R. J., Li, J., Yan, C., Huang, J., Rong, H., Ramsden, C., & Hao, X. (2021). Analysis of manufacturing cost and market niches for Cu2ZnSnS4 (CZTS) solar cells. Sustainable Energy & Fuels, 5 (4), 1044–1058.
18. Jia, Y., Zhang, T., Zhai, Y., Bai, Y., Ren, K., Shen, X., Cheng, Z., Zhou, X., & Hong, J. (2022). Exploring the potential health and ecological damage of lead–zinc production activities in China: A life cycle assessment perspective. Journal of Cleaner Production, 381, 135218.
19. Song, X., Ji, X., Li, M., Lin, W., Luo, X., & Zhang, H. (2014). A review on development prospect of CZTS based thin film solar cells. International Journal of Photoenergy, 2014, 1–11.
20. Hahn, H., & de Lorent, C. (1958). Untersuchungen über ternäre chalkogenide. über ternäre sulfide und selenide des germaniums mit zink, Cadmium und Quecksilber. Naturwissenschaften, 45 (24), 621–622.
21. Kessler, F., Hariskos, D., Spiering, S., Lotter, E., Huber, H. P., & Wuerz, R. (2019). CIGS thin film PV—approaches and challenges. Springer Series in Optical Sciences, 175–218.
22. Wang, Y.-C., Wu, T.-T., & Chueh, Y.-L. (2019). A critical review on flexible Cu (In, GA) Se2 (CIGS) solar cells. Materials Chemistry and Physics, 234, 329–344.
23. Copper indium gallium selenide solar cells market size, share & industry analysis, by deposition (electrospray deposition, chemical vapor deposition, co-evaporation, film production), by end-use (automobiles, electronics and Electrical, energy and power, others), by film thickness (1-2 micro meters, 2-3 micro meters, 3-4 micro meters) and Regional Forecast 2023-2030. Copper Indium Gallium Selenide Solar Cells Market Size, Industry Share | Forecast, 2030. (n. d.).
24. Copper indium gallium diselenide. (n. d.). Retrieved May 7, 2023, from
25. Meillaud, F., Boccard, M., Bugnon, G., Despeisse, M., Hänni, S., Haug, F.-J., Persoz, J., Schüttauf, J.-W., Stuckelberger, M., & Ballif, C. (2015). Recent advances and remaining challenges in thin-film Silicon PV Technology. Materials Today, 18 (7), 378–384.
26. Sreejith, S., Ajayan, J., Kollem, S., & Sivasankari, B. (2022). A comprehensive review on thin film amorphous silicon solar cells. Silicon, 14 (14), 8277–8293.
27. Crystalline Silicon Photovoltaics Research, (n. d.) Retrieved September 21, 2023, from
28. Xiaopu Wang, Xinyi Tian, Xiaodong Chen, Lingling Ren, Chunxiang Geng (2022). A review of end-of-life crystalline silicon solar photovoltaic panel recycling technology, Solar Energy Materials and Solar Cells, 248,
29. Spring 2022 Solar Industry Update, (n. d.) Retrieved September 21, 2023, from
30. Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map, (n.d.) Retrieved September 21, 2023, from
31. De Bastiani M, Larini V, Montecucco R, Grancini G. The levelized cost of electricity from perovskite photovoltaics. Energy Environ Sci. 2022 Dec 22; 16(2): 421-429. doi: 10.1039/d2ee03136a.
32. Jame, H. A., Sarker, S., Islam, Md. S., Islam, Md. T., Rauf, A., Ahsan, S., Nishat, S. S., Jani, Md. R., Shorowordi, K. Md., Carbonara, J., & Ahmed, S. (2021). Supervised machine learning-aided SCAPS-based quantitative analysis for the discovery of optimum bromine doping in methylammonium tin-based perovskite (masni3–xbrx). ACS Applied Materials & Interfaces, 14 (1), 502–516.