American Journal of Chemical Engineering

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Research Article |

Modeling of Spiral Wound Membranes for CO2 Removal from Natural Gas

The proposed research aims to develop an effective model and design technique for gas separation systems based on spiral-wound. Object-Oriented Programming (OOP) paradigm was applied to create a simulator of the entire membrane module used to separate CO2 from natural gas. The simulator's architecture is represented in a Unified Modelling Language (UML) diagram, and Python was used to create it. The model was built using forward finite difference techniques in both one and two dimensions. A two-stage membrane separation machine was used to test our mathematical model. There are six banks in the primary membrane separation unit, each with seven tubes; these tubes each contain twelve membrane elements. The initial stage of a gas separation process involves introducing the gas stream, which then splits into the retentate and permeate streams. The retentate stream is discharged out as a gaseous byproduct, while the permeate stream goes via a permeate compressor to raise its pressure before entering the second stage of the membrane unit. There are ten membrane elements in each of the tubes that make up the second-stage membrane unit's membrane banks. At this point, the goal is to waste as little hydrocarbon as possible. The second-stage retentate stream is reused as feed for the first-stage reactor, while the second-stage permeate stream is directed to the flare. This two-stage membrane separation device provides an empirical test of our mathematical concept. Several tweaks have been made to our model to improve precision and computational speed. There is a new dimensionless parameter, the selectivity and permeate flow rate equations have been simplified, and faster techniques for computing key variables have been implemented. Additionally, membrane package data can be imported into the new model for a deeper dive into sensitivity analysis. Using our proposed model, we determined how changes in factors including flow velocity, pressure ratio, carbon dioxide composition, membrane active area, and membrane thickness affected product purity and CO2 selectivity. There was an adverse relationship between product purity and feed rate, pressure ratio, CO2 mole fraction, and membrane thickness, but a positive correlation between product purity and membrane area. The mole fraction of CO2 also determines the selectivity for CO2. Data collected in the field was used to verify the accuracy of the model. The validation data demonstrated that the model's predictions of MSU's performance were accurate within a margin of error of 3%.

Membrane, Gas Separation, Spiral Wound, Mathematical Model, Forward Finite Difference, 1D Model, 2D Model

APA Style

Ahmed Wahba Gabr, Abbas Anwar Ezzat, A. H. EL-Shazly, Wael Bakr, Mohammed Shamakh, et al. (2023). Modeling of Spiral Wound Membranes for CO2 Removal from Natural Gas. American Journal of Chemical Engineering, 11(3), 52-63. https://doi.org/10.11648/j.ajche.20231103.12

ACS Style

Ahmed Wahba Gabr; Abbas Anwar Ezzat; A. H. EL-Shazly; Wael Bakr; Mohammed Shamakh, et al. Modeling of Spiral Wound Membranes for CO2 Removal from Natural Gas. Am. J. Chem. Eng. 2023, 11(3), 52-63. doi: 10.11648/j.ajche.20231103.12

AMA Style

Ahmed Wahba Gabr, Abbas Anwar Ezzat, A. H. EL-Shazly, Wael Bakr, Mohammed Shamakh, et al. Modeling of Spiral Wound Membranes for CO2 Removal from Natural Gas. Am J Chem Eng. 2023;11(3):52-63. doi: 10.11648/j.ajche.20231103.12

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Bernardo, P., Drioli, E., & Golemme, G. (2009). Membrane gas separation: A review/state of the art. Industrial & Engineering Chemistry Research, 48 (10), 4638-4663. DOI: 10.1021/ie8019032.
2. Baker, R. W. (2012). Membrane technology and applications (3rd ed.). John Wiley & Sons. ISBN: 978-0-470-74664-4.
3. Li, Y., & Chen, H. (2018). Gas separation membranes: Polymeric and inorganic. Springer International Publishing. DOI: 10.1007/978-3-319-68255-6.
4. Caro, J., Noack, M., Kölsch, P., & Schäfer, R. (2010). Zeolite membranes – Recent developments and progress. Microporous and Mesoporous Materials, 131 (1-3), 215-246. DOI: 10.1016/j.micromeso.2009.06.024.
5. Liang, W., Bajpai, R., & Huang, Y. (2017). Metal–organic framework membranes for gas separation. Chemical Society Reviews, 46 (12), 3357-3385. DOI: 10.1039/C6CS00859A.
6. Fontoura, T. B., de Sá, M. C. C., de Menezes, D. Q. F., Oechsler, B. F., Melo, A., Campos, L. F. O., Anzai, T. K., Diehl, F. C., Thompson, P. H., & Pinto, J. C. (2022). Modeling of spiral wound membranes for gas separations. Part III: A nonisothermal 2D permeation model. Chemical Engineering Research and Design, 177, 376-393. DOI: 10.1016/j.cherd.2021.10.036.
7. Alshehri, A. A. (2015). Modeling and simulation of spiral wound membrane modules for natural gas sweetening (Doctoral dissertation). University of Waterloo. DOI: 10.20381/ruor-3459.
8. Alshehri, A. A., & Lieuwen, D. (2021). Multicomponent spiral wound membrane model for natural gas sweetening applications. Membranes, 11 (9), 654. DOI: 10.3390/membranes11090654.
9. Pinto, J. C., Campos, L. F. O., Melo, A., Oechsler, B. F., & Thompson, P. H. (1998). Optimization-based design of spiral-wound membrane systems for CO2/CH4 separation. Computers & Chemical Engineering, 22 (12), S1027-S1030. DOI: 10.1016/S0098-1354(98)00044-6.
10. Alshehri, A. A., Lieuwen, D., & Pritzker, M. D. (2017). CO2 removal from multi-component gas mixtures utilizing spiral-wound membrane modules: Experimental and modeling studies. International Journal of Greenhouse Gas Control, 63, 1-14. DOI: 10.1016/j.ijggc.2017.05.004.
11. Marriott, J. I., Sørensen, E., & Bogle, I. D. L. (2001). Detailed mathematical modelling of membrane modules. Computers & Chemical Engineering, 25 (4-6), 693-700. DOI: 10.1016/S0098-1354(01)00670-6.
12. Ang, W. L., & Mohammad, A. W. (2015). Mathematical modeling of membrane operations for water treatment. In A. Basile & A. Cassano (Eds.), Advances in membrane technologies for water treatment: Materials, processes and applications (pp. 379-407). Woodhead Publishing. DOI: 10.1016/B978-1-78242-121-4.00012-5.
13. Alshehri, A. A., Lieuwen, D., & Pritzker, M. D. (2017). Mathematical modeling of membrane gas separation using the finite difference method. Journal of Natural Gas Science and Engineering, 38, 1-11. DOI: 10.1016/j.jngse.2016.12.002.
14. Hébrard, G., & Lutin, F. (2013). Mathematical modelling of membrane separation. In J.-P. Canselier & M.-N. Pons (Eds.), Microemulsions: Properties and applications (pp. 233-254). CRC Press. ISBN: 9781420007129.
15. Shindo, Y., Hwang, S. T., & Sirkar, K. K. (1985). Mathematical modelling of multicomponent membrane permeators. Journal of Membrane Science, 23 (3), 255-278. DOI: 10.1016/S0376-7388(00)80486-X.
16. Weller, S., Hwang, S. T., & Sirkar, K. K. (1950). Permeability of thin organic films to various gases. Industrial & Engineering Chemistry, 42 (6), 1226-1231. DOI: 10.1021/ie50486a036.
17. Pan, C. Y., Koros, W. J., & Paul, D. R. (1978). Calculation methods for multicomponent gas mixture permeation. Journal of Membrane Science, 3 (4), 351-366. DOI: 10.1016/S0376-7388(00)80257-2.
18. Qi, R., & Henson, M. A. (1997). Mathematical modeling and simulation of CO2 removal from natural gas by membrane systems. Industrial & Engineering Chemistry Research, 36 (9), 3829-3841. DOI: 10.1021/ie960777g.
19. Faizan, A., Al-Marzouqi, M. H., Al-Marzouqi, A. H., & Al-Hamadani, Y. A. (2010). Crossflow mathematical model for multicomponent gas separation using hollow fiber membrane modules. Journal of Membrane Science, 362 (1-2), 413-424. DOI: 10.1016/j.memsci.2010.06.057.
20. Amooghin, A. E., Omidkhah, M. R., Kargari, A., & Moslehishad, M. (2013). Mathematical modeling of ternary gas mixture permeation through PDMS/PA composite membrane using Maxwell–Stefan approach and artificial neural network model. Chemical Engineering Research and Design, 91 (11), 2174-2187. DOI: 10.1016/j.cherd.2013.06.008.
21. Qadir, S., Ahmad Khan, Z., & Ahmad Khan, N. A. (2019). CFD modeling of spiral wound membrane modules for natural gas separation: A review and future perspectives. Journal of Natural Gas Science and Engineering, 66, 1-14. DOI: 10.1016/j.jngse.2019.03.011.
22. DeJaco, R. F., Thompson Jr., J. A., & Lively R. P. (2020). Modeling gas separations with spiral-wound membranes using experimental data from a commercial-scale module and a bench-scale module with identical membrane area and feed composition. Journal of Membrane Science, 598, 117689. DOI: 10.1016/j.memsci.2019.117689.
23. Dias, A. S., Campos, L. F. O., Melo, A., Oechsler, B. F., & Pinto, J. C. (2020). Mathematical modeling of gas separations in spiral-wound membranes: Model development and validation. Chemical Engineering Research and Design, 161, 1-14. DOI: 10.1016/j.cherd.2020.05.012.
24. Abdul-Latif, A. A. (2021). Numerical modeling of multicomponent natural gas separation using spiral-wound membrane modules (Doctoral dissertation). University of Waterloo. DOI: 10.20381/ruor-2675.
25. Chasnov, J. R. (2022). Scientific computing. World Scientific. ISBN: 978-981-12-1339-4.
26. Smith, G. D. (1985). Numerical solution of partial differential equations: Finite difference methods (3rd ed.). Oxford University Press. ISBN: 978-0-19-859650-9.
27. Morton, K. W., & Mayers, D. F. (2005). Numerical solution of partial differential equations: An introduction (2nd ed.). Cambridge University Press. DOI: 10.1017/CBO9780511811268.
28. Brett D. McLaughlin, Gary Pollice, David West (2006). Head-First Object-Oriented Analysis and Design: A Brain Friendly Guide. O’Reilly Media, ISBN: 978-0-596-00867-3.
29. Dawson, M. (2010). Object-Oriented Programming in Python: Create Your Own Adventure Game by Michael Dawson. Course Technology PTR. ISBN: 978-1-59200-479-4.
30. E. Balagurusamy (2008). Object-Oriented Programming with C++. McGraw-Hill Education. ISBN: 978-0-07-066907-3.
31. Bernd Bruegge, Allen H. Dutoit (2011). Object-Oriented Software Engineering Using UML, Patterns, and Java by. Pearson Education. ISBN: 978-0-13-606125-0.
32. Stewart, J. (2016). Calculus: Early transcendentals (8th ed.). Cengage Learning. ISBN: 978-1-305-11709-0.