Advances in Bioscience and Bioengineering

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Sorghum as a Model Crop for Drought Stress Tolerance

Sorghum is one of the most significant C4 cereal crops grown in dry and semi-arid regions of the world. It is a major staple crop for millions of people in Sub-Saharan Africa and South Asia. Drought is an important constraint on agricultural production and productivity around the world. It has a significant impact on plant growth, development, and yields. Drought stress risks food security by having a substantial impact on sorghum growth and development, grain yields, and nutritional quality. Sorghum has become known as a drought-tolerant model crop when compared with many other crops. Its ability to withstand extreme environmental conditions makes it a feasible model crop for studying abiotic stress responses and developing stress-tolerant crops. Sorghum response and/or tolerance mechanisms include morphological, physiological, and molecular changes. Drought stress tolerance mechanisms in sorghum include drought escape, early flowering, stay-green, drought avoidance, leaf area, osmotic adjustment, stomata-mediated drought responses, cuticular wax production, root characteristics, and drought tolerance. Biotechnology and its advanced approaches, such as QTL, marker-assisted backcrossing, genetic engineering, and others, are used for screening drought-tolerant genotypes that can withstand drought stress. Therefore, focusing on the drought-tolerant genotypes will boost the speed of the sorghum breeding program, which will feed millions of people worldwide, particularly in Sub-Saharan Africa.

Drought, Drought Tolerance, Grain Yield, Sorghum, Stay-Green

APA Style

Mulatu Gidi. (2023). Sorghum as a Model Crop for Drought Stress Tolerance. Advances in Bioscience and Bioengineering, 11(3), 54-65.

ACS Style

Mulatu Gidi. Sorghum as a Model Crop for Drought Stress Tolerance. Adv. BioSci. Bioeng. 2023, 11(3), 54-65. doi: 10.11648/

AMA Style

Mulatu Gidi. Sorghum as a Model Crop for Drought Stress Tolerance. Adv BioSci Bioeng. 2023;11(3):54-65. doi: 10.11648/

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Mann, J. A., Kimber, C. T., andMiller, F. R. (1983). The origin and early cultivation of sorghums in Africa. Texas FARMER Collection.
2. Boatwright J. Lucas, Brenton Zachary W., Boyles Richard E., Sirjan Sapkota, Myers Matthew T., Jordan Kathleen E., Dale Savanah M., Nadia Shakoor, Cooper Elizabeth A., Morris Geoffrey P. and Stephen Kresovich, (2021). Genetic Characterization of a Sorghum bicolor Multiparent Mapping Population Emphasizing Carbon-Partitioning Dynamics. Genetics Society of America 1-14.
3. FAOSTAT, (2020). Food and agriculture organization of the United Nations. Rome, Lazio, Italy: FAO. Available at:
4. Ejeta, G. (2005). “Integrating biotechnology, breeding, and agronomy in the control of the parasitic weed striga spp in sorghum,” in The wake of the double helix: from the green revolution to the gene revolution, Bologna Bologna. Eds. R. Tuberosa, R. L. Phillips and M. Gale. (Bologna: Avenue Media) 239–251.
5. Liedtke J. D., C. H. Hunt, B. George-Jaeggli, K. Laws, J. Watson, A. B. Potgieter, A. Cruickshank and D. R. Jordan, (2020). High-Throughput Phenotyping of Dynamic Canopy Traits Associated with Stay-Green in Grain Sorghum. Plant Phenomics.
6. Eggen, M.; Ozdogan, M.; Zaitchick, B.; Ademe, D.; Foltz, J.; Simane, B. (2019). Vulnerability of sorghum production to extreme, subseasonal weather under climate change. Environ. Res. Lett. 14, 045005.
7. IPCC, Intergovernmental Panel on Climate Change (2013). Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to V Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T. F., Qin, G. K., Plattner, M., Tignor, S. K., Allen, J., Boschung, A.; Nauels, A., Xia, Y., Bex, V., Midgley, P. M., Eds.; Cambridge University Press: Cambridge, UK, 2013.
8. Xu, Z.; Zhou, G.; Shimizu, H. (2018). Plant responses to drought and rewatering. Plant Signal. Behav. 5, 649–654.
9. Patanè, C.; Saita, A.; Sortino, O. (2013). Comparative effects of salt and water stress on seed germination and early embryo growth in two cultivars of sweet sorghum. J. Agron. Crop Sci. 199, 30–37.
10. Prasad, P. V. V.; Djanaguiraman, M.; Jagadish, S. V. K.; Ciampitti, I. A. (2019). Drought and high temperature stress and traits associated with tolerance. In Sorghum: A State of the Art and Future Perspectives; Ciampitti, I. A., Prasad, P. V. V., Eds.; ASA, CSSA, SSSA: Madison, WI, USA, Volume 58, pp. 245–265.
11. Earl, H. J.; Davis, R. F. (2003). Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J. 95, 688–696.
12. Djanaguiraman, M.; Prasad, P. V. V.; Ciampitti, I. A.; Talwar, H. S. (2020). Impact of abiotic stress on sorghum physiology. In: Sorghum in the 21st Century: Food—Fodder—Feed—Fuel for a Rapidly Changing World; Springer Nature: Singapore, pp. 157–188.
13. Khan Awais, Valpuri Sovero and Dorcus Gemenet, (2016). Genome-assisted Breeding for Drought Resistance. Current Genomics 17 (4): 330-342.
14. Bibi A, Sadaqat HA, Tahir MHN, Akram HM. (2012). Screening of Sorghum (Sorghum bicolor Var Moench) for Drought Tolerance at Seedling Stage in Polyethylene Glycol. Journal of Animal and Plant Sciences, 22 (3): 671-678.
15. Abdel-Ghany S, Ullah F, Ben-Hur A, Reddy A. (2020). Transcriptome Analysis of Drought- Resistant and Drought-Sensitive Sorghum (Sorghum bicolor) Genotypes in Response to PEGInduced Drought Stress. International Journal of Molecular Sciences 27 (772).
16. Fracasso A, Trindade L, Amaducci S. (2016a). Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biology, 16: 115.
17. Winchell F, Stevens CJ, Murphy C, Champion L, Fuller Dorian Q. (2017). Evidence for Sorghum Domestication in Fourth Millennium BC Eastern Sudan: Spikelet Morphology from Ceramic Impressions of the Butana Group. Current Anthropology 58, 673-683.
18. Henderson AN, Crim PM, Cumming JR, Hawkins JS. (2020). Phenotypic and physiological responses to salt exposure in Sorghum reveal diversity among domesticated landraces. American Journal of Botany 107, 983-992.
19. Swigonova Z, Lai J, Ma J, Ramakrishna W, Llaca V, Bennetzen J, Messing J. (2004). Close split of sorghum and maize genome progenitors. Genome Research, 1916 1923.
20. Qadir M, Bibi A, Tahir MHN, Saleem M, Sadaqat H. (2015). Screening of sorghum (Sorghum bicolor L) genotypes under various levels of drought stress. Maydica 60.
21. Fracasso A, Trindade L, Amaducci S. (2016b). Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. Journal of Plant Physiology 190, 1-14.
22. Khalid, W., Ali, A., Arshad, M. S., Afzal, F., Akram, R., Siddeeg, A., et al. (2022). Nutrients and bioactive compounds of Sorghum bicolor L. Used to prepare functional foods: A review on the efficacy against different chronic disorders. Int. J. Food Prop. 25 (1), 1045–1062. doi: 10.1080/10942912.2022.2071293.
23. Rao, B. D. (2019). “Sorghum value chain for food and fodder security,” in breeding sorghum for diverse end uses (Woodhead Publishing), 409–419.
24. Dicko MH, Gruppen, H, Traore AS, Van Berkel WJH and Voragen AGJ (2005). Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties. Journal of Agricultural and Food Chemistry 53: 2581–2588.
25. Rooney LW. (2007). Food and nutritional quality of sorghum and millet. INTSORMIL 2007 Annual Report, Lincoln, Nebraska, USA, pp 91–93.
26. Shin SI, Choi HJ, Chung KM, Hamaker BR, Park KH and Moon TW, (2004). Slowly digestible starch from debranched waxy sorghum starch: Preparation and properties. Cereal Chemistry 81: 404–408.
27. Awika JM and Rooney LW, (2004). Sorghum phytochemicals and their potential aspects on human health. Phytochemistry 65: 1199–1221.
28. Dykes L, Rooney LW, Waniska RD and Rooney WL (2005). Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. Journal of Agricultural and Food Chemistry 53: 6813–6818.
29. Cha-um, S., Yooyongwech, S. & Supaibulwatana, K. (2012) Water-deficit tolerant classification in mutant lines of indica rice. Scientia Agricola, 69 (2), 135–141.
30. Németh, M., Janda, T., Horváth, E., Páldi, E. & Szalai, G. (2002) Exogenous salicylic acid increases polyamine content but may decrease drought tolerance in maize. Plant Science, 162 (4), 569–574.
31. Ngara, R., Goche, T., Swanevelder, D. Z. H., and Chivasa, S. (2021). Sorghum’s whole-plant transcriptome and proteome responses to drought stress: a review. Life 11, 704. doi: 10.3390/life11070704
32. Fracasso A, Trindade LM, Amaducci S (2016). Drought stress tolerance strategies revealed by RNA-Seq in two sorghum genotypes with contrasting WUE. BMC Plant Biol.
33. Zhang DF, ZengG TR, Liu XY, Gao CX, Li YX, Li CH, Song YC, shi YS, Wang TY, Yu LI (2019). Transcriptomic profiling of sorghum leaves and roots responsive to drought stress at the seedling stage. Journal of Integrative Agriculture, 18 (9), pp. 1980-1995.
34. Sukumaran S, Li X, Li X, Zhu C, Bai G, Perumal R, Tuinstra MR, Prasad PV, Mitchell SE, Tesso TT (2016). QTL mapping for grain yield, flowering time, and stay-green traits in sorghum with genotyping-by-sequencing markers. Crop Sci 56 (4): 1429–1442.
35. Chaves MM, Flexas J, Pinheiro C (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103 (4): 5 51–560. 1093/aob/mcn125
36. Vadez V, Krishnamurthy L, Hash C, Upadhyaya H, Borrell A (2011b). Yield, transpiration efficiency, and water-use variations and their interrelationships in the sorghum reference collection. Crop Pasture Sci 62 (8): 645–655. 07
37. Lopez JR, Erickson JE, Munoz P, Saballos A, Felderhoff TJ, Vermerris W (2017). QTLs associated with crown root angle, stomatal conductance, and maturity in Sorghum. Plant Genome.
38. Hadebe, S. T.; Modi, A. T.; Mabhaudhi, T. (2017). Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in sub-Saharan Africa. J. Agron. Crop Sci. 203, 177–191. [CrossRef]
39. Ndlovu E, van Staden J, Maphosa M (2021) Morpho-physiological effects of moisture, heat and combined stresses on Sorghum bicolor [Moench (L.)] and its acclimation mechanisms. Plant Stress.
40. Queiroz MS, Oliveira CE, Steiner F, Zuffo AM, Zoz T, Vendruscolo EP, Silva MV, Mello BFFR, Cabra RC, Menis FT (2019). Drought stresses on seed germination and early growth of maize and sorghum. Journal of Agricultural Science, 11 (2), pp. 310-318.
41. Ramu VS, Swetha TN, Sheela SH, Babitha CK, Rohini S, Reddy MK, Tuteja N, Reddy CP, Prasad TG, Udayakumar M (2016). Simultaneous expression of regulatory genes associated with specific drought‐adaptive traits improves drought adaptation in peanut. Plant Biotechnology Journal, 14 (3), pp. 1008-1020.
42. Fadoul HE, El Siddig MA, Abdalla AWH, El Hussein AA (2018). Physiological and proteomic analysis of two contrasting Sorghum bicolor genotypes in response to drought stress. Australian Journal of Crop Science, 12 (9), pp. 1543-1551.
43. Sarshad A, Talei D, Torabi M, Rafiei F, Nejatkhah P (2021). Morphological and biochemical responses of Sorghum bicolor (L.) Moench under drought stress. SN Applied Sciences, 3 (1), pp. 1-12.
44. Sabadin PK., Malosetti M, Boer MP, Tardin FD, Santo FG, Guimaraes CT, Gomide RL, Andrade CLT, Albuquerque PEP, Caniato FF, Mollinari M (2012). Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theoretical and Applied Genetics, 124 (8), pp. 1389-1402.
45. Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A. (2005). Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiologia Plantarum, 123 (4), pp. 459-466.
46. Kapanigowda MH, Perumal R, Djanaguiraman M, Aiken RM, Tesso T, Prasad PV, Little CR, (2013). Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance. Springer Plus, 2 (1), pp. 1-13.
47. Manjarrez-Sandoval PEDRO, González-Hernández VA, Mendoza-Onofre LE, Engleman E. M (1989). Drought stress effects on the grain yield and panicle development of sorghum. Canadian Journal of Plant Science, 69 (3), pp. 631-641.
48. Batista‐Silva W, Heinemann B, Rugen N, Nunes‐Nesi A, Araújo WL, Braun HP, Hildebrandt TM (2019). The role of amino acid metabolism during abiotic stress release. Plant, cell & environment, 42 (5), pp. 1630-1644.
49. Yu SM, Lo SF, Ho THD (2015). Source-sink communication: regulated by hormone, nutrient, and stress cross-signaling. Trends Plant Sci 20 (12): 844–857. ts. 2015. 10. 009
50. Impa SM, Perumal R, Bean SR, Sunoj VJ, Jagadish SK. (2019). Water deficit and heat stress induced alterations in grain physico-chemical characteristics and micronutrient composition in field grown grain sorghum. Journal of Cereal Science, 86, pp. 124-131.
51. Stagnari F, Galieni A, Pisante M (2016). Drought stress effects on crop quality. In: Water Stress and Crop Plants. pp 375–392. https://doi. org/10. 1002/97811 19054 450. ch23
52. Ashok Badigannavar, Niaba Teme, Antonio Costa de Oliveira, Guying Li, Michel Vaksmann, Vivian Ebeling Viana, T. R. Ganapathi and Fatma Sarsu, (2018). Physiological, genetic and molecular basis ofdrought resilience in sorghum [Sorghum bicolor (L.) Moench]. Indian Journal for Plant Physiology.
53. Craufurd, P. Q.; Qi, A. (2001). Photothermal adaptation of sorghum (Sorghum bicolor) in Nigeria. Agric. For. Meteorol. 108, 199–211.
54. Barnabas, B.; Jager, K.; Feher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31, 11–38.
55. Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, de Groot S, Soole K and Langridge P, (2017). Early Flowering as a Drought Escape Mechanism in Plants: How Can It Aid Wheat Production?. Front. Plant Sci. 8: 1950. doi: 10.3389/fpls.2017.01950.
56. Hatfield JL and Dold C., (2019). Water-Use Efficiency: Advances and Challenges in a Changing Climate. Front. Plant Sci. 10: 103. doi: 10.3389/fpls.2019.00103.
57. Tesfamichael Abraha, Stephen Mwangi Githiri, Remmy Kasili, Woldeamlak Araia, Aggrey Bernard Nyende, (2015). Genetic Variation among Sorghum (Sorghum bicolor L. Moench) Landraces from Eritrea under Post-Flowering Drought Stress Conditions. American Journal of Plant Sciences, 6, 1410-1424.
58. Velazco JG, Jordan DR, Mace ES, Hunt CH, Malosetti M and van Eeuwijk FA, (2019). Genomic Prediction of Grain Yield and Drought-Adaptation Capacity in Sorghum Is Enhanced by Multi-Trait Analysis. Front. Plant Sci 10: 997. doi: 10.3389/fpls.2019.00997.
59. Kassahun, B.; Bidinger, F. R.; Hash, C. T.; Kuruvinashetti, M. S. (2009). Stay-green expression in early generation sorghum (Sorghum bicolor (L.) Moench) QTL introgression lines. Euphytica, 172, 351–362.
60. Gano, B.; Dembele, J. S. B.; Tovignan, T. K.; Sine, B.; Vadez, V.; Diouf, D.; Audebert, A., (2021). Adaptation Responses to Early Drought Stress of West Africa Sorghum Varieties. Agronomy 11 (443): 1-21.
61. Mahalakshmi, V.; Bidinger, F. R. (2002). Evaluation of putative stay-green sorghum germplasm lines. Crop Sci. 42, 965–974.
62. Passioura, J. B. (2012). Phenotyping for drought tolerance in grain crops: When is it useful to breeders? Funct. Plant Biol. 39, 851–859.
63. Turner, N. C.; Begg, J. E.; Tonnet, M. L. (1978). Osmotic adjustment of sorghum and sunflower crops in response to water deficits and its influence on the water potential at which stomata close. Funct. Plant Biol. 5, 597–608.
64. Blum A. (2005). Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research 56, 1159.
65. Ogawa A, Yamauchi A. (2006). Root Osmotic Adjustment under Osmotic Stress in Maize Seedlings 1. Transient Change of Growth and Water Relations in Roots in Response to Osmotic Stress. Plant Production Science 9, 27-38.
66. Assefa, Y.; Staggenborg, S. A.; Prasad, P. V. V. (2010). Grain sorghum water requirement and responses to drought stress: A review. Crop. Manag. 2010, doi: 10.1094/CM-1109-01-RV.
67. Turner NC, Jones MM. (1980). Turgor Maintenance by Osmotic Adjustment: A Review and Evaluation. In: Turner, N. C. and Kramer, P. J., Eds., Adaptation of Plants to Water and High Temperature Stress, Willey & Sons, New York, 87-103.
68. Blum A. (2017). Osmotic adjustment is a prime drought stress adaptive engine in support of plant production: Osmotic adjustment and plant production. Plant, Cell & Environment 40, 4-10.
69. Chaves M, Costa J, Zarrouk O, Pinheiro O, Lopes C, Pereira J. (2016). Controlling stomatal aperture in semi-arid regions – The dilemma of saving water or being cool. Plant Science 251, 54-64.
70. Marcinska I, Czyczylo-Mysza I, Skrzypek E, Filek M, Grzesiak S, Grzesiak M, Janowiak F, Hura T, Dziurka M, Dziurka K, Nowakowska A, Quarrie S. (2012). Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible an drought resistant wheat genotypes. Acta Physiologiae Plantarum 35, 451-461.
71. Rodrigues, J., Inze, D., Nelissen, H., and Saibo, N. J. M. (2019). Source-sink regulation in crops under water deficit. Trends Plant Sci. 24, 652–663. doi: 10.1016/j.tplants.2019.04.005.
72. Xue D, Zhang X, Lu X, Chen G and Chen Z-H, (2017). Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance. Front. Plant Sci. 8: 621. doi: 10.3389/fpls.2017.00621.
73. Elango, D., Xue, W. & Chopra, S., (2020). Genome wide association mapping of epi-cuticular wax genes in Sorghum bicolor. Physiol Mol Biol Plants 26, 1727–1737.
74. Sajeevan R. S., Parvathi M. S. and Nataraja K. N., (2017). Leaf wax trait in crops for drought and biotic stress tolerance: regulators of epicuticular wax synthesis and role of small RNAs. Ind J plant physio. 22,434-447
75. Amtmann, A., Bennett, M. J., and Henry, A. (2022). Root phenotypes for the future. Plant Cell Environ. 45 (3), 595–601. doi: 10.1111/pce.14269.
76. Ruben Rufo, Silvio Salvi, Conxita Royo and Jose Miguel Soriano, 2020. Exploring the Genetic Architecture of Root-Related Traits in Mediterranean Bread Wheat Landraces by Genome-Wide Association Analysis. Agronomy10: 613doi: 10.3390/agronomy10050613.
77. Fromm, H. (2019). Root plasticity in the pursuit of water. Plants-Basel. 8 (7), 236. doi: 10.3390/plants8070236.
78. Gupta, A., Rico-Medina, A., and Cano-Delgado, A. I. (2020). The physiology of plant responses to drought. Science 368 (6488), 266–269. doi: 10.1126/science.aaz7614.
79. Siddiqui, M. N., Leon, J., Naz, A. A., and Ballvora, A. (2021). Genetics and genomics of root system variation in adaptation to drought stress in cereal crops. J. Exp. Bot. 72 (4), 1007–1019. doi: 10.1093/jxb/eraa487.
80. Kang, J., Peng, Y., and Xu, W. (2022). Crop root responses to drought stress: molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere. Int. J. Mol. Sci. 23, 9310. doi: 10.3390/ijms23169310.
81. Fenta, B. A.; Beebe, S. E.; Kunert, K. J.; Burridge, J. D.; Barlow, K. M.; Lynch, P. J. (2014). Fiel phenotyping of soybean roots for drought stress tolerance. Agronom 4, 418–435.
82. Comas Louise H., Becker Steven R., Cruz Von Mark V., Byrne Patrick F. and Dierig David A., (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science 4: 442 doi: 10.3389/fpls.2013.00442.
83. Allah Wasaya, Xiying Zhang, Qin Fang and Zongzheng Yan, (2018). Root Phenotyping for Drought Tolerance: A Review. Agronomy 8: 241; doi: 10.3390/agronomy8110241.
84. Vega, R. C., Villagra, P. E., and Greco, S. A. (2020). Different root strategies of perennial native grasses under two contrasting water availability conditions: implications for their spatial distribution in desert dunes. Plant Ecol. 221 (7) 633–646. doi: 10.1007/s11258-020-01038-9.
85. Lynch, J. P. (2022). Harnessing root architecture to address global challenges. Plant J. 109 (2), 415–431. doi: 10.1111/tpj.15560.
86. Chen, X.; Wu, Q.; Gao, Y.; Zhang, J.; Wang, Y.; Zhang, R.; Zhou, Y.; Xiao, M.; Xu, W.; Huang, R., (2020). The role of deep roots in sorghum yield production under drought conditions. Agronomy 10, 611.
87. Hasan, M. M.; Rafii, M. Y.; Ismail, M. R.; Mahmood, M.; Rahim, H. A.; Alam, M. A.; Ashkani, S.; Malek, M. A.; Latif, M. A. (2015). Marker assisted backcrossing: A useful method for rice improvement. Biotechnol. Biotechnol. Equip. 29, 237–254. [CrossRef] [PubMed]
88. Sanchez, A. C.; Subudhi, P. K.; Rosenow, D. T.; Nguyen, H. T. (2002). Mapping QTLs associated with drought resistance in sorghum [Sorghum bicolor (L.) Moench]. Plant Mol. Biol. 48, 713–726. [CrossRef] [PubMed]
89. Crasta, O. R.; Xu, W. W.; Rosenow, D. T.; Mullet, J.; Nguyen, H. T. (1999). Mapping of post-flowering drought resistance traits in grain sorghum: Association between QTLs influencing premature senescence and maturity. Mol. Genet. Genom. 262, 579–588. [CrossRef] [PubMed]
90. Harris, K. R. (2007) Genetic Analysis of the Sorghum bicolor Stay-Green Drought Tolerance Trait. Ph. D. Thesis, Texas A&M University, College Station, TX, USA.
91. Hash, C. T.; Raj, A. G. B.; Lindup, S.; Sharma, A.; Beniwal, C. R.; Folkertsma, R. T.; Mahalakshmi, V.; Zerbini, E.; Blummel, M. (2003). Opportunities for marker- assisted selection (MAS) to improve the feed quality of crop residues in pearl millet and sorghum. Field Crop. Res. 84, 79–88.
92. Baloch, F. S.; Alsaleh, A.; Shahid, M. Q.; Çiftçi, V.; de Miera, L. E. S.; Aasim, M.; Nadeem, M. A.; Akta¸s, H.; Özkan, H.; Hatipo˘ glu, R.(2017). A Whole Genome DArTseq and SNP Analysis for Genetic Diversity Assessmentin Durum Wheat from Central Fertile Crescent. PLoS ONE, 12, e0167821. [CrossRef]
93. Mwamahonje, A.; Eleblu, J. S. Y.; Ofori, K.; Feyissa, T.; Deshpande, S.; Garcia-Oliveira, A. L.; Bohar, R.; Kigoni, M.; Tongoona, P. (2021). Introgression of QTLs for Drought Tolerance into Farmers’ Preferred Sorghum Varieties. Agriculture, 11, 883. [CrossRef]
94. Subudhi, P. K.; Rosenow, D. T.; Nguyen, H. T. (2007). Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): Consistency across genetic backgrounds and environments. Theor. Appl. Genet. 101, 733–741. [CrossRef]
95. Menz, M. A.; Klein, R. R.; Mullet, J. E.; Obert, J. A.; Unruh, N. C.; Klein, P. E. (2002). A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and, SSR markers. Plant Mol. Biol. 48, 483–499. [CrossRef]
96. Reddy, R. N.; Madhusudhana, R.; Mohan, S. M.; Chakravarthi, D. V.; Mehtre, S. P.; Seetharama, N.; Patil, J. V. (2013). [Sorghum bicolor (L.) Moench] Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum. Theor. Appl. Genet. 126, 1921–1939. [CrossRef]
97. Kholova, J.; Deshpande, S.; Madhusudhana, R.; Blummel, M.; Borrell, A.; Hammer, G. (2019). Improving Post-Rainy Sorghum Varieties to Meet the Growing Grain and Fodder Demand in India-Phase 2; Australian Centre for International Agricultural Research: Canberra, Australia, p. 29.
98. Kadam, S. R.; Fakrudin, B. (2017). Marker assisted pyramiding of root volume QTLs to improve drought tolerance in rabi sorghum. Res. Crop. 18, 683–692. [CrossRef]
99. Takeda Sh, and Matsuoka M, (2008). Genetic approaches to crop improvement: Responding to environmental and population changes. Nature Reviews Genetics. 9 (6): 44-57. doi: 10.1038/nrg2342. [Pubmed]
100. Kamal, N. M.; Gorafi, Y. S. A.; Ghanim, A. M. A. (2017). Performance of Sorghum stay-green introgression lines under post-flowering drought. Int. J. Plant Res. 7, 65–74.
101. Sakiyama, N. S.; Ramos, H. C. C.; Caixeta, E. T.; Pereira, M. G. (2014). Plant breeding with marker-assisted selection in Brazil. Crop Breed. Appl. Biotechnol. 14, 54–60. [CrossRef]
102. Kebede, H.; Subudhi, P. K.; Rosenow, D. T.; Nguyen, H. T. (2001). Quantitative trait loci influencing drought tolerance in grain sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 103, 266–276. [CrossRef]
103. Gorthy, S.; Narasu, L.; Gaddameedi, A.; Sharma, H. C.; Kotla, A.; Deshpande, S. P.; Are, A. K. (2017). Introgression Introgression of Shoot Fly [Atherigona soccata (L.) Moench] Resistance QTLs into Elite Post-rainy Season Sorghum Varieties Using Marker Assisted Backcrossing (MABC). Front. Plant Sci. 8, 1494. [CrossRef]
104. Ongom, P. O. (2016). Association Mapping of Gene Regions for Drought Tolerance and Agronomic Traits in Sorghum. Ph. D. Thesis, Purdue University, West Lafayette, IN, USA.
105. Rida Fatima Ahmed, Muhammad Irfan, Hafiz Abdullah Shakir, Muhammad Khan and Lijing Chen, (2020). Engineering drought tolerance in plants by modification of transcription and signalling factors. Biotechnology & Biotechnological Equipment, 34 (1): 781-789,
106. Sharmila Polumahanthi, Sarada M ani N., Sudhakar Pola, Dora S. V. V. S. N. and Nageswara Rao S. (2014). Tissue Culture, Molecular and Genetic Approaches to Sorghum Crop Improvement – A Review. Indian Journal of Plant Sciences Vol. 4 Pp. 97-113.
107. Elkonin L. A., O. N. Nosova and J. V. Italianskaya, (2012). Agrobacterium-Mediated Genetic Transformation of Sorghum Using Tissue Culture-Based and Pollen Mediated Approaches. Journal of Stress Physiology & Biochemistry, Vol. 8 No. 3.
108. Bray, E. A. (1993). Molecular responses to water deficit. Plant Physiol. 103, 103 1040. doi: 10.1104/pp.103.4.1035.
109. Bray, E. A. (1997). Plant responses to water deficit. Trends Plant Sci. 2, 48–54. doi: 10.1016/S1360-1385(97)82562-9.
110. Xiong, L., and Zhu, J. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 25, 131–139. doi: 10.1046/j.1365-3040.2002.00782.x.
111. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185– 212. doi: 10.1051/agro:2008021.
112. Basu, S., Ramegowda, V., Kumar, A., and Pereira, A. (2016). Plant adaptation to drought stress. F1000 Res. 5, 1554. doi: 10.12688/f1000research.7678.1.
113. Zhang, J., Jiang, F., Shen, Y., Zhan, Q., Bai, B., Chen, W., et al. (2019a). Transcriptome analysis reveals candidate genes related to phosphorus starvation tolerance in sorghum. BMC Plant Biol. 19, 306. doi: 10.1186/s12870-019-1914-8.
114. Wang, T., Ren, Z., Liu, Z., Feng, X., Guo, R., Li, B., et al. (2014). SbHKT1; 4, a member of the high-affinity potassium transporter gene family from sorghum bicolor, functions to maintain optimal Na + /K + balance under Na + stress. J. Integr. Plant Biol. 56, 315–332. doi: 10.1111/jipb.12144.
115. Li, H., Li, Y., Ke, Q., Kwak, S. S., Zhang, S., and Deng, X. (2020). Physiological and differential proteomic analyses of imitation drought stress response in Sorghum bicolor root at the seedling stage. Int. J. Mol. Sci. 21, 9174. doi: 10.3390/ijms21239174.