Due to the advent of XDR Salmonella Typhi, antibiotic resistance in typhoid fever presents a serious public health concern, leading to treatment failure and extended illness. Of all the serotypes of Salmonella enterica, serovar Typhi is the most prevalent serotypes and is capable of developing resistance. A worrying trend is the appearance of extensively drug resistant (XDR) S. Typhi in many parts of the world, especially Pakistan. However, a thorough understanding of the epidemics and the creation of immediate responses are hampered by the lack of data. An updated summary of the current XDR Salmonella Typhi outbreaks in endemic and epidemic areas is being described due to reports of treatment failure in both humans and animals, treating XDR Salmonella Typhi infections is difficult. However, strict preventative measures can be put in place until the discovery of novel and alternative treatment options. Quick surveillance of pathogenic micro-organisms and an emphasis on antimicrobial stewardship are necessary to monitor potential spread of the epidemics in human and animal populations alike. Despite the fact that certain areas are making headway against XDR Salmonella Typhi, a concerted and effective global effort is needed to stop the XDR outbreak before it worsens and sends us back to the era before antibiotics.
| Published in | Science Futures (Volume 1, Issue 1) |
| DOI | 10.11648/j.scif.20250101.20 |
| Page(s) | 84-94 |
| Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
| Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
XDR, MDR, AMP, CHL, CRO
| [1] | Abatcha, M. G., Goni, M. D., Abbas, M. A., Jalo, I. M., & Mohammed, G. (2020). A review of Listeria and Salmonella: An update on description, characteristics, incidence, and antibiotic susceptibility. Adv. Anim. Vet. Sci, 8(11), 1232-1249. |
| [2] | Abd El-Aziz, N. K., Tartor, Y. H., Gharieb, R. M. A., Erfan, A. M., Khalifa, E., Said, M. A., Ammar, A. M., & Samir, M. (2021). Extensive drug-resistant Salmonella enterica isolated from poultry and humans: prevalence and molecular determinants behind the co-resistance to ciprofloxacin and tigecycline. Frontiers in Microbiology, 12, 738784. |
| [3] | Ahmad, S., Tsagkaris, C., Aborode, A. T., Haque, M. T. U., Khan, S. I., Khawaja, U. A., dos Santos Costa, A. C., Essar, M. Y., & Lucero-Prisno Iii, D. E. (2021). A skeleton in the closet: the implications of COVID-19 on XDR strain of typhoid in Pakistan. Public health in practice, 2, 100084. |
| [4] | Akram, J., Khan, A. S., Khan, H. A., Gilani, S. A., Akram, S. J., Ahmad, F. J., & Mehboob, R. (2020). Extensively drug‐resistant (XDR) typhoid: evolution, prevention, and its management. BioMed Research International, 2020(1), 6432580. |
| [5] | Andrews, J. R., Qamar, F. N., Charles, R. C., & Ryan, E. T. (2018). Extensively drug-resistant typhoid-are conjugate vaccines arriving just in time? New England Journal of Medicine, 379(16), 1493-1495. |
| [6] | Antillón, M., Warren, J. L., Crawford, F. W., Weinberger, D. M., Kürüm, E., Pak, G. D.,... Pitzer, V. E. (2017). The burden of typhoid fever in low-and middle-income countries: a meta-regression approach. PLoS neglected tropical diseases, 11(2), e0005376. |
| [7] | Appiah, G. D., M. J. Hughes and K. Chatham-Stephens, 2019. (2019). Chapter 4: Travel-related infectious diseases: Typhoid and paratyphoid fever: Centers for Disease Control and Prevention (CDC). |
| [8] | Batool, R., Qureshi, S., Yousafzai, M. T., Kazi, M., Ali, M., & Qamar, F. N. (2022). Risk factors associated with extensively drug-resistant typhoid in an outbreak setting of Lyari Town Karachi, Pakistan. The American journal of tropical medicine and hygiene, 106(5), 1379. |
| [9] | Bell, B. G., Schellevis, F., Stobberingh, E., Goossens, H., & Pringle, M. (2014). A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC infectious diseases, 14, 1-25. |
| [10] | Bisola Bello, A., Olamilekan Adesola, R., Idris, I., Yawson Scott, G., Alfa, S., & Akinfemi Ajibade, F. (2024). Combatting extensively drug-resistant Salmonella: a global perspective on outbreaks, impacts, and control strategies. Pathogens and Global Health, 1-15. |
| [11] | Browne, A. J., Chipeta, M. G., Fell, F. J., Haines-Woodhouse, G., Hamadani, B. H. K., Kumaran, E. A. P., Aguilar, G. R., McManigal, B., Andrews, J. R., Ashley, E. A., & Ashley, E. A. (2024). Estimating the subnational prevalence of antimicrobial resistant Salmonella enterica serovars Typhi and Paratyphi A infections in 75 endemic countries, 1990–2019: a modelling study. The Lancet Global Health, 12(3), e406-e418. |
| [12] | Buckle, G. C., Walker, C. L. F., & Black, R. E. (2012). Typhoid fever and paratyphoid fever: Systematic review to estimate global morbidity and mortality for 2010. Journal of global health, 2(1). |
| [13] | Butt, M., Mohammed, R., Butt, E., Butt, S., & Xiang, J. (2020). Why have immunization efforts in Pakistan failed to achieve global standards of vaccination uptake and infectious disease control? Risk management and healthcare policy, 111-124. |
| [14] | Butt, M. H., Saleem, A., Javed, S. O., Ullah, I., Rehman, M. U., Islam, N., Tahir, M. A., Malik, T., Hafeez, S., & Misbah, S. (2022). Rising XDR-typhoid fever cases in Pakistan: are we heading back to the pre-antibiotic era? Frontiers in public health, 9, 794868. |
| [15] | CDC. (2021a). Extensively drug-resistant Salmonella typhi infections among US residents without international travel. |
| [16] |
CDC. (2021b). Typhoid vaccine information statement. Retrieved from [cited 2021 Sep 9]. from
https://www.cdc.gov/vaccines/hcp/vis/vis-statements/typhoid.html |
| [17] | CDC. (2021c). Typhoid fever and paratyphoid fever. Retrieved from |
| [18] | CDC. (2023). Information for healthcare professionals and laboratories. Retrieved from |
| [19] | CDC. (2024). Drug-Resistant Salmonella Serotype Typhi. n.d [cited 2024 Feb 23]. from |
| [20] | Chami, B., & Bao, S. (2012). Salmonella: Invasion, Evasion & Persistence. In Salmonella-Distribution, Adaptation, Control Measures and Molecular Technologies: IntechOpen. |
| [21] | Chatham-Stephens, K. (2019). Emergence of extensively drug-resistant Salmonella Typhi infections among travelers to or from Pakistan-United States, 2016–2018. MMWR. Morbidity and Mortality Weekly Report, 68. |
| [22] | Chernov, V. M., Chernova, O. A., Mouzykantov, A. A., Lopukhov, L. L., & Aminov, R. I. (2019). Omics of antimicrobials and antimicrobial resistance. Expert opinion on drug discovery, 14(5), 455-468. |
| [23] | Chong, A., Cooper, K. G., Kari, L., Nilsson, O. R., Hillman, C., Fleming, B. A., Wang, Q., Nair, V., & Steele-Mortimer, O. (2021). Cytosolic replication in epithelial cells fuels intestinal expansion and chronic fecal shedding of Salmonella Typhimurium. Cell Host & Microbe, 29(7), 1177-1185. |
| [24] | Costa, M. M., Penido, M., Dos Santos, M. S., Doro, D., de Freitas, E., Michalick, M. S. M., Grimaldi, G., Gazzinelli, R. T., & Fernandes, A. P. (2012). Improved canine and human visceral leishmaniasis immunodiagnosis using combinations of synthetic peptides in enzyme-linked immunosorbent assay. PLoS neglected tropical diseases, 6(5), e1622. |
| [25] | Crump, J. A., Sjölund-Karlsson, M., Gordon, M. A., & Parry, C. M. (2015). Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clinical microbiology reviews, 28(4), 901-937. |
| [26] | Dos Santos, A. M. P., Ferrari, R. G., & Conte-Junior, C. A. (2019). Virulence factors in Salmonella Typhimurium: the sagacity of a bacterium. Current microbiology, 76, 762-773. |
| [27] | Dutil, L., Irwin, R., Finley, R., Ng, L. K., Avery, B., Boerlin, P., Bourgault, A. M., Cole, L., Daignault, D., Desruisseau, A., & Desruisseau, A. (2010). Ceftiofur resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada. Emerging infectious diseases, 16(1), 48. |
| [28] | Ehuwa, O., Jaiswal, A. K., & Jaiswal, S. (2021a). Food Safety and Food Handling Practices. |
| [29] | Ehuwa, O., Jaiswal, A. K., & Jaiswal, S. (2021b). Salmonella, food safety and food handling practices. Foods, 10(5), 907. |
| [30] | Engsbro, A. L., Jespersen, H. S. R., Goldschmidt, M. I., Mollerup, S., Worning, P., Pedersen, M. S., Westh, H., & Schneider, U. V. (2019). Ceftriaxone-resistant Salmonella enterica serotype Typhi in a pregnant traveller returning from Karachi, Pakistan to Denmark, 2019. Eurosurveillance, 24(21), 1900289. |
| [31] | Fatima, A., Saleem, M., Nawaz, S., Khalid, L., Riaz, S., & Sajid, I. (2023). Prevalence and antibiotics resistance status of Salmonella in raw meat consumed in various areas of Lahore, Pakistan. Scientific Reports, 13(1), 22205. |
| [32] | Fatima, M., Kumar, S., Hussain, M., Memon, N. M., Vighio, A., Syed, M. A., Chaudhry, A., Hussain, Z., Baig, Z. I., Baig, M. A., & Baig, M. A. (2021). Morbidity and mortality associated with typhoid fever among hospitalized patients in Hyderabad district, Pakistan, 2017-2018: retrospective record review. JMIR Public Health and Surveillance, 7(5), e27268. |
| [33] | Feasey, N. A., Gaskell, K., Wong, V., Msefula, C., Selemani, G., Kumwenda, S., Allain, T. J., Mallewa, J., Kennedy, N., Bennett, A., & Bennett, A. (2015). Rapid emergence of multidrug resistant, H58-lineage Salmonella typhi in Blantyre, Malawi. PLoS neglected tropical diseases, 9(4), e0003748. |
| [34] | Ghurnee, O., Ghosh, A. K., Abony, M., Aurin, S. A., Fatema, A. N., Banik, A., & Ahmed, Z. (2021). Isolation of multi-drug resistant (MDR) and extensively drug resistant (XDR) Salmonella typhi from blood samples of patients attending tertiary medical centre in Dhaka city, Bangladesh. Advances in Microbiology, 11(9), 488-498. |
| [35] | Hanumunthadu, B., Kanji, N., Owino, N., Da Silva, C. F., Robinson, H., White, R., Ferruzzi, P., Nakakana, U., Canals, R., Pollard, A. J., & Pollard, A. J. (2023). Salmonella Vaccine Study in Oxford (SALVO) trial: protocol for an observer-participant blind randomised placebo-controlled trial of the iNTS-GMMA vaccine within a European cohort. BMJ open, 13(11), e072938. |
| [36] | Hendriksen, R. S., Leekitcharoenphon, P., Lukjancenko, O., Lukwesa-Musyani, C., Tambatamba, B., Mwaba, J., Kalonda, A., Nakazwe, R., Kwenda, G., Jensen, J. D., & Jensen, J. D. (2015). Genomic signature of multidrug-resistant Salmonella enterica serovar Typhi isolates related to a massive outbreak in Zambia between 2010 and 2012. Journal of clinical microbiology, 53(1), 262-272. |
| [37] | Hooda, Y., Sajib, M. S. I., Rahman, H., Luby, S. P., Bondy-Denomy, J., Santosham, M., Andrews, J. R., Saha, S. K., & Saha, S. (2019). Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLoS neglected tropical diseases, 13(11), e0007868. |
| [38] | Hooper, D. C., & Wolfson, J. S. (1991). Fluoroquinolone antimicrobial agents. New England Journal of Medicine, 324(6), 384-394. |
| [39] | Howard‐Jones, A., Kesson, A. M., Outhred, A. C., & Britton, P. N. (2019). First reported case of extensively drug‐resistant typhoid in Australia. The Medical Journal of Australia, 211(6), 286-286. |
| [40] | Hughes, M. J., Birhane, M. G., Dorough, L., Reynolds, J. L., Caidi, H., Tagg, K. A., Snyder, C. M., Yu, A. T., Altman, S. M., Boyle, M. M., & Boyle, M. M. (2021, 2021). Extensively drug-resistant typhoid fever in the United States. |
| [41] | Humam, A. M., Loh, T. C., Foo, H. L., Samsudin, A. A., Mustapha, N. M., Zulkifli, I., & Izuddin, W. I. (2019). Effects of feeding different postbiotics produced by Lactobacillus plantarum on growth performance, carcass yield, intestinal morphology, gut microbiota composition, immune status, and growth gene expression in broilers under heat stress. Animals, 9(9), 644. |
| [42] | Idris, I., & Adesola, R. O. (2022). Vaccine as a remedy for antimicrobial resistance; what are the Pros and Cons? World News of Natural Sciences, 42, 76-84. |
| [43] | Jabeen, K., Saleem, S., Jahan, S., Nizamudin, S., Arshad, F., Huma, Z.-e., Raza, S. M., Mehmood, M., Roman, M., & Haq, F. U. (2023). Molecular characterization of extensively drug resistant Salmonella enterica Serovar Typhi clinical isolates from Lahore, Pakistan. Infection and Drug Resistance, 2987-3001. |
| [44] | Jajere, S. M. (2019). A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Veterinary world, 12(4), 504. |
| [45] | Jangid, M. K. (2021). A rare case of an imported typhoid fever caused by extensively drug-resistant salmonella typhi in the UAE. Hamdan Medical Journal, 14(2), 95-97. |
| [46] | Joaquim, P., Herrera, M., Dupuis, A., & Chacana, P. (2021). Virulence genes and antimicrobial susceptibility in Salmonella enterica serotypes isolated from swine production in Argentina. Revista Argentina de Microbiología, 53(3), 233-239. |
| [47] | Khan, E. A. (2019). XDR Typhoid: The problem and its solution. Journal of Ayub Medical College Abbottabad, 31(2), 139-140. |
| [48] | Khan, M. A. S., & Rahman, S. R. (2022). Use of phages to treat antimicrobial-resistant Salmonella infections in poultry. Veterinary Sciences, 9(8), 438. |
| [49] | Kirk, M. D., Pires, S. M., Black, R. E., Caipo, M., Crump, J. A., Devleesschauwer, B., Döpfer, D., Fazil, A., Fischer-Walker, C. L., Hald, T., & Hald, T. (2015). World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS medicine, 12(12), e1001921. |
| [50] | Klemm, E. J., Shakoor, S., Page, A. J., Qamar, F. N., Judge, K., Saeed, D. K.,... Baker, S. (2018). Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio, 9(1), 10-1128. |
| [51] | Kombade, S., & Kaur, N. (2021). Pathogenicity island in Salmonella. In Salmonella spp.-A Global Challenge: IntechOpen. |
| [52] | Kong-Ngoen, T., Santajit, S., Tunyong, W., Pumirat, P., Sookrung, N., Chaicumpa, W., & Indrawattana, N. (2022). Antimicrobial resistance and virulence of non-typhoidal Salmonella from retail foods marketed in Bangkok, Thailand. Foods, 11(5), 661. |
| [53] | Kwoji, I. D., Aiyegoro, O. A., Okpeku, M., & Adeleke, M. A. (2021). Multi-strain probiotics: synergy among isolates enhances biological activities. Biology, 10(4), 322. |
| [54] | Latif, A., Shehzad, A., Niazi, S., Zahid, A., Ashraf, W., Iqbal, M. W., Rehman, A., Riaz, T., Aadil, R. M., Khan, I. M., & Khan, I. M. (2023). Probiotics: Mechanism of action, health benefits and their application in food industries. Frontiers in Microbiology, 14, 1216674. |
| [55] | Li, Q., Ren, J., Xian, H., Yin, C., Yuan, Y., Li, Y., Ji, R., Chu, C., Qiao, Z. & Jiao, X. (2020). rOmpF and OMVs as efficient subunit vaccines against Salmonella enterica serovar Enteritidis infections in poultry farms. Vaccine, 38(45), 7094-7099. |
| [56] | Li, X., Cao, H., Chen, J. H.-K., Ng, Y.-Z., Fung, K.-K., Cheng, V. C.-C., & Ho, P.-L. (2023). Genomic investigation of Salmonella Typhi in Hong Kong revealing the predominance of genotype 3.2. 2 and the first case of an extensively drug-resistant H58 genotype. Microorganisms, 11(3), 667. |
| [57] | Lin, D. M., Koskella, B., & Lin, H. C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World journal of gastrointestinal pharmacology and therapeutics, 8(3), 162. |
| [58] | Liu, P.-Y., Wang, K.-C., Hong, Y.-P., Chen, B.-H., Shi, Z.-Y., & Chiou, C.-S. (2021). The first imported case of extensively drug-resistant Salmonella enterica serotype Typhi infection in Taiwan and the antimicrobial therapy. Journal of Microbiology, Immunology and Infection, 54(4), 740-744. |
| [59] | Majowicz, S. E., Musto, J., Scallan, E., Angulo, F. J., Kirk, M., O'Brien, S. J., Jones, T. F., Fazil, A., Hoekstra, R. M., & International Collaboration on Enteric Disease “Burden of Illness”, S. (2010). The global burden of nontyphoidal Salmonella gastroenteritis. Clinical infectious diseases, 50(6), 882-889. |
| [60] | Marcus, S. L., Brumell, J. H., Pfeifer, C. G., & Finlay, B. B. (2000). Salmonella pathogenicity islands: big virulence in small packages. Microbes and infection, 2(2), 145-156. |
| [61] | McEwen, S. A., & Collignon, P. J. (2018). Antimicrobial resistance: a one health perspective. Antimicrobial resistance in bacteria from livestock and companion animals, 521-547. |
| [62] | Memon, H., Saeed, F., Iqbal, M., Saboohi, E., Hanif, S., & Mallick, A. H. H. (2022). Association of extensively drug resistant salmonella infection in children with typhoid fever. Pakistan Journal of Medical Sciences, 38(7), 1864. |
| [63] | Mkangara, M. (2023). Prevention and control of human Salmonella enterica infections: An implication in food safety. International Journal of Food Science, 2023(1), 8899596. |
| [64] | Mumtaz, M. N., Irfan, M., Siraj, S., Khan, A., Khan, H., Imran, M., Khan, I. A., & Khan, A. (2024). Whole-genome sequencing of extensively drug-resistant Salmonella enterica serovar Typhi clinical isolates from the Peshawar region of Pakistan. Journal of Infection and Public Health, 17(2), 271-282. |
| [65] | Naushad, S., Ogunremi, D., & Huang, H. (2023). Salmonella: A Brief Review. Salmonella-Perspectives for Low-Cost Prevention, Control and Treatment. |
| [66] | Neupane, D. P., Dulal, H. P., & Song, J. (2021). Enteric fever diagnosis: current challenges and future directions. Pathogens, 10(4), 410. |
| [67] | NIH. (2021). Weekly field epidemiology. Report. |
| [68] | Nizamuddin, S., Ching, C., Kamal, R., Zaman, M. H., & Sultan, F. (2021). Continued outbreak of ceftriaxone-resistant Salmonella enterica serotype Typhi across Pakistan and assessment of knowledge and practices among healthcare workers. The American journal of tropical medicine and hygiene, 104(4), 1265. |
| [69] |
Parry, C. M., Hien, T. T., Dougan, G., White, N. J., & Fever, J. J. F. T. (2002). 347.
https://doi.org/10.1056/NEJMra020201 1770-1782. |
| [70] | Popa, G. L., & Papa, M. I. (2021). Salmonella spp. infection-a continuous threat worldwide. Germs, 11(1), 88. |
| [71] | Rasheed, M., Hasan, S. S., & Ahmed, S. I. (2019). Extensively drug-resistant typhoid fever in Pakistan. The Lancet Infectious Diseases, 19(3), 242-243. |
| [72] | Riahi, M., Mohammadi, A. A., Moghadam, V. K., Robati, Z. S., & Bidkhori, M. (2018). Diarrhea deaths in children among countries with different levels of the human development index. Data in brief, 17, 954. |
| [73] | Roper, L. E. (2024). Use of Additional Doses of 2024–2025 COVID-19 Vaccine for Adults Aged≥ 65 Years and Persons Aged≥ 6 Months with Moderate or Severe Immunocompromise: Recommendations of the Advisory Committee on Immunization Practices-United States, 2024. MMWR. Morbidity and Mortality Weekly Report, 73. |
| [74] | Sabbagh, S. C., Forest, C. G., Lepage, C., Leclerc, J.-M., & Daigle, F. (2010). So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS microbiology letters, 305(1), 1-13. |
| [75] | Saeed, N., Usman, M., & Khan, E. A. (2019). An overview of extensively drug-resistant Salmonella Typhi from a tertiary care hospital in Pakistan. Cureus, 11(9). |
| [76] | Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M. M., Sanders, M. E., Shamir, R., Swann, J. R., Szajewska, H., & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9), 649-667. |
| [77] | Shaikh, O. A., Asghar, Z., Aftab, R. M., Amin, S., Shaikh, G., & Nashwan, A. J. (2023). Antimicrobial resistant strains of Salmonella typhi: The role of illicit antibiotics sales, misuse, and self-medication practices in Pakistan. Journal of Infection and Public Health, 16(10), 1591-1597. |
| [78] | Sirima, S. B., Ouedraogo, A., Barry, N., Siribie, M., Tiono, A. B., Nébié, I., Konaté, A. T., Berges, G. D., Diarra, A., Ouedraogo, M., & Ouedraogo, M. (2021). Safety and immunogenicity of co-administration of meningococcal type A and measles–rubella vaccines with typhoid conjugate vaccine in children aged 15–23 months in Burkina Faso. International Journal of Infectious Diseases, 102, 517-523. |
| [79] | Smith, C., Smith, E., Chiu, C., Hinton, J., Sepulveda, B. P., Gordon, M., Choy, R. K., Hill, P. W., Meiring, J. E., Darton, T. C., & Darton, T. C. (2023). The challenge non-typhoidal salmonella (CHANTS) consortium: development of a non-typhoidal salmonella controlled human infection model: report from a consultation group workshop, 05 July 2022, London, UK. Wellcome Open Research, 8. |
| [80] | Stanaway, J. D., Reiner, R. C., Blacker, B. F., Goldberg, E. M., Khalil, I. A., Troeger, C. E., Andrews, J. R., Bhutta, Z. A., Crump, J. A., Im, J., & Im, J. (2019). The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet Infectious Diseases, 19(4), 369-381. |
| [81] | Teklemariam, A. D., Al-Hindi, R. R., Albiheyri, R. S., Alharbi, M. G., Alghamdi, M. A., Filimban, A. A. R.,... Almaneea, A. M. (2023). Human salmonellosis: a continuous global threat in the farm-to-fork food safety continuum. Foods, 12(9), 1756. |
| [82] | Tharwani, Z. H., Kumar, P., Salman, Y., Islam, Z., Ahmad, S., & Essar, M. Y. (2022). Typhoid in Pakistan: Challenges, efforts, and recommendations. Infection and Drug Resistance, 2523-2527. |
| [83] | Ul Huda, N., Sohail, M., Mirani, Z. A., & Khan, S. (2024). Source tracking of extensively drug resistant Salmonella Typhi in food and raw vegetables using molecular approaches. The Journal of Infection in Developing Countries, 18(02), 227-234. |
| [84] | Van Camp, R. O., & Shorman, M. (2025). Typhoid Vaccine. In StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC. |
| [85] | Vanderslott, S., Kumar, S., Adu-Sarkodie, Y., Qadri, F., & Zellweger, R. M. (2023). Typhoid control in an era of antimicrobial resistance: challenges and opportunities. |
| [86] | Vt Nair, D., Venkitanarayanan, K., & Kollanoor Johny, A. (2018). Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 7(10), 167. |
| [87] | Walker, J., Chaguza, C., Grubaugh, N. D., Carey, M., Baker, S., Khan, K., Bogoch, I. I., & Pitzer, V. E. (2023). Assessing the global risk of typhoid outbreaks caused by extensively drug resistant Salmonella Typhi. Nature Communications, 14(1), 6502. |
| [88] | Wang, Y., Lu, D., Jin, Y., Wang, H., Lyu, B., Zhang, X., Huang, Y., Shu, G., Liu, B., Lin, C., & Lin, C. (2022). Extensively drug-resistant (XDR) Salmonella typhi outbreak by waterborne infection-Beijing Municipality, China, January–February 2022. China CDC Weekly, 4(12), 254. |
| [89] | War, J. M., Nisa, A. U., Wani, A. H., & Bhat, M. Y. (2022). Microbial food-borne diseases due to Climate Change. In Climate Change and Microbes (pp. 187-234): Apple Academic Press. |
| [90] | WHO. (2019a). Drug resistant Salmonella infections in Pakistan: update. Wkly Epidemiol Monit, 12(1). |
| [91] | WHO. (2019b). Typhoid vaccines: WHO position paper, March 2018–Recommendations. Vaccine, 37(2), 214-216. |
| [92] | Wong, W., Al Rawahi, H., Patel, S., Yau, Y., Eshaghi, A., Zittermann, S., Tattum, L., & Morris, S. K. (2019). The first Canadian pediatric case of extensively drug-resistant Salmonella Typhi originating from an outbreak in Pakistan and its implication for empiric antimicrobial choices. IDCases, 15, e00492. |
| [93] | Yesigat, T., Jemal, M., & Birhan, W. (2020). Prevalence and associated risk factors of Salmonella, Shigella, and intestinal parasites among food handlers in Motta town, North West Ethiopia. Canadian Journal of Infectious Diseases and Medical Microbiology, 2020(1), 6425946. |
| [94] | Zakir, M., Khan, M., Umar, M. I., Murtaza, G., Ashraf, M., & Shamim, S. (2021). Emerging trends of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Salmonella Typhi in a tertiary care Hospital of Lahore, Pakistan. Microorganisms, 9(12), 2484. |
APA Style
Bashir, I., Danish, S. R., Bashir, G. K. (2025). Public Health Implications of XDR Typhoid Spread in Pakistan and Roadmap for Resistance Mitigation. Science Futures, 1(1), 84-94. https://doi.org/10.11648/j.scif.20250101.20
ACS Style
Bashir, I.; Danish, S. R.; Bashir, G. K. Public Health Implications of XDR Typhoid Spread in Pakistan and Roadmap for Resistance Mitigation. Sci. Futures 2025, 1(1), 84-94. doi: 10.11648/j.scif.20250101.20
@article{10.11648/j.scif.20250101.20,
author = {Iqra Bashir and Sohaib Raza Danish and Ghulam Khadija Bashir},
title = {Public Health Implications of XDR Typhoid Spread in Pakistan and Roadmap for Resistance Mitigation},
journal = {Science Futures},
volume = {1},
number = {1},
pages = {84-94},
doi = {10.11648/j.scif.20250101.20},
url = {https://doi.org/10.11648/j.scif.20250101.20},
eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.scif.20250101.20},
abstract = {Due to the advent of XDR Salmonella Typhi, antibiotic resistance in typhoid fever presents a serious public health concern, leading to treatment failure and extended illness. Of all the serotypes of Salmonella enterica, serovar Typhi is the most prevalent serotypes and is capable of developing resistance. A worrying trend is the appearance of extensively drug resistant (XDR) S. Typhi in many parts of the world, especially Pakistan. However, a thorough understanding of the epidemics and the creation of immediate responses are hampered by the lack of data. An updated summary of the current XDR Salmonella Typhi outbreaks in endemic and epidemic areas is being described due to reports of treatment failure in both humans and animals, treating XDR Salmonella Typhi infections is difficult. However, strict preventative measures can be put in place until the discovery of novel and alternative treatment options. Quick surveillance of pathogenic micro-organisms and an emphasis on antimicrobial stewardship are necessary to monitor potential spread of the epidemics in human and animal populations alike. Despite the fact that certain areas are making headway against XDR Salmonella Typhi, a concerted and effective global effort is needed to stop the XDR outbreak before it worsens and sends us back to the era before antibiotics.},
year = {2025}
}
TY - JOUR T1 - Public Health Implications of XDR Typhoid Spread in Pakistan and Roadmap for Resistance Mitigation AU - Iqra Bashir AU - Sohaib Raza Danish AU - Ghulam Khadija Bashir Y1 - 2025/12/11 PY - 2025 N1 - https://doi.org/10.11648/j.scif.20250101.20 DO - 10.11648/j.scif.20250101.20 T2 - Science Futures JF - Science Futures JO - Science Futures SP - 84 EP - 94 PB - Science Publishing Group UR - https://doi.org/10.11648/j.scif.20250101.20 AB - Due to the advent of XDR Salmonella Typhi, antibiotic resistance in typhoid fever presents a serious public health concern, leading to treatment failure and extended illness. Of all the serotypes of Salmonella enterica, serovar Typhi is the most prevalent serotypes and is capable of developing resistance. A worrying trend is the appearance of extensively drug resistant (XDR) S. Typhi in many parts of the world, especially Pakistan. However, a thorough understanding of the epidemics and the creation of immediate responses are hampered by the lack of data. An updated summary of the current XDR Salmonella Typhi outbreaks in endemic and epidemic areas is being described due to reports of treatment failure in both humans and animals, treating XDR Salmonella Typhi infections is difficult. However, strict preventative measures can be put in place until the discovery of novel and alternative treatment options. Quick surveillance of pathogenic micro-organisms and an emphasis on antimicrobial stewardship are necessary to monitor potential spread of the epidemics in human and animal populations alike. Despite the fact that certain areas are making headway against XDR Salmonella Typhi, a concerted and effective global effort is needed to stop the XDR outbreak before it worsens and sends us back to the era before antibiotics. VL - 1 IS - 1 ER -