West Africa (WA) in recent past experienced decreasing rainfall and increasing temperature. A preliminary assessment of these trends in the future (2025-2045) was conducted to evaluate its potential impact on water resources, specifically the Tono irrigation dam in Ghana. The climate change assessment was based on future climate data of Representative Concentration Pathways (RCPs) 4.5 and 8.5 projected with ECHAM6 model and downscaled by the Weather Research and Forecasting (WRF) model in reference with historical data (1990-2010). A 2-domain configuration was used: an outer domain at 25 km horizontal resolution encompassing the West African Region and an inner domain at 5 km horizontal resolution centered on the Tono basin. The assessment was done based on the annual mean, relative percentage change and spatial seasonal change of the simulated precipitation and temperature. The results show that for precipitation, both scenarios do not agree on the signal of change. RCP4.5 indicates an increase (+7%) in annual precipitation amount whereas RCP 8.5 indicates a decrease (-9.6%). For temperature, both scenarios agree on increasing temperature. These results shows that future streamflow will be influenced by climate change. The indications are that the flows will reduce does the dam levels will also reduce does affecting irrigation activities. This studies therefore provides information to the managers of Tono irrigation dam what measures to put in place for its sustainability.
Published in | Hydrology (Volume 8, Issue 4) |
DOI | 10.11648/j.hyd.20200804.12 |
Page(s) | 69-78 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2020. Published by Science Publishing Group |
RCPs, Climate Change, Streamflow, WRF Model, Water Resources, Sustainability
[1] | Naabil, E., Lamptey, B. L., Arnault, J., Olufayo, A., Kunstmann, H., 2017: Water resources management using the WRF-Hydro modeling system: Case-study of the Tono dam in West Africa. Journal of Hydrology: Regional Studies 12, 196–209. |
[2] | Coulibaly, N., Coulibaly, T. J. H., Mpakama, Z., Savané, I., 2018: The Impact of Climate Change on Water Resource Availability in a Trans-Boundary Basin in West Africa: The Case of Sassandra. Hydrology, 5, 12; doi: 10.3390/hydrology5010012. |
[3] | Abdelkrim, B. S., 2013: Vulnérabilité et Adaptation Aux Changements Climatiques Dans les Oasis de la Région de Tafilalet-Maroc. Ph. D. Thesis, Université Cadi Ayyad, Marrakesh, Maroc. |
[4] | Kouassi, A. M.; Kouamé, K. F.; Saley, M. B.; Biémi, J., 2013: Application du modèle de maillet à l’étude des impacts des changements climatiques sur les ressources en eau en Afrique de l’Ouest: Cas du bassin versant du N’ Zi-Bandama (Cote d’Ivoire). IJSRM, 3, 214–228. |
[5] | Goula, B. T. A.; Savane, I.; Konan, B.; Fadika, V.; Kouadio, G. B., 2007: Impact de la variabilité climatique sur les ressources hydriques des bassins de N’Zo et N’Zi en Côte d’Ivoire (Afrique tropicale humide). Vertigo, 7. |
[6] | Kouakou, K. E.; Goula, B. T. A.; Savané, I., 2007: Impacts de la variabilité climatique sur les ressources en eau de surface en zone tropicale humide: Cas du bassin versant transfrontalier de la Comoé (Côte d’Ivoire—Burkina Faso). EJSR, 16, 31–43. |
[7] | Vissin, E. W., 2007: Impact de la Variabilité Climatique et de la Dynamique Des États de Surface Sur Les Écoulements du Bassin Béninois du Fleuve Niger. Ph. D. Thesis, Université de Bourgone, Dijon, France. |
[8] | Kouakou, K. E., 2011: Impacts de la Variabilité Climatique et du Changement Climatique Sur Les Ressources eneau en Afrique de l’Ouest: Cas du Bassin Versant de la Comoé. Ph. D. Thesis, Université Abobo-Adjamé, Abidjan, Côte d’Ivoire. |
[9] | Ardoin, B. S., 2004: Variabilité Hydroclimatique et Impacts Sur Les Ressources en Eau de Grands Bassins Hydrographiques en Zone Soudano-Sahélienne. Ph. D. Thesis, Université de Montpellier II, Montpellier, France. |
[10] | Melillo, Jerry M., Terese (T. C) Richmond, and Gary W. Yohe, Eds., 2014: Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, 841 pp. |
[11] | Arnault, J., Wagner, S., Rummler, T., Fersch, B., Blieffernicht, J., Andresen, S., Kunstmann, H., 2015: Role of runoff-infiltration partitioning and additionally resolved overland flow on land-atmosphere feedbacks: A case study with the WRF-Hydro coupled modeling system for West Africa. Journal of Hydrometeorology. Doi: http://dx.doi.org/10.1175/JHM-D-15-0089.1. |
[12] | Ardoin, B. S.; Dezetter, A.; Servat, E.; Mahe, G.; Paturel, J. E.; Dieulin, C.; Casenave, L., 2005: Évaluation des impacts du changement climatique sur les ressources en eau d’Afrique de l’Ouest et Centrale. Proceedings of symposium S6 held during the Seventh IAHS Scientific Assembly at Foz do Iguaçu, Brazil. IAHS Publ. 296, 194–202. |
[13] | Rescan, M., 2005: Prévision des Ressources en eau en Afrique de L’ouest et Centrale Jusqu’en 2099 Par Application Des Sorties du Modèle D’évolution du Climat HadCM3 au Modèle Hydrologique GR2M; DEA; Université Montpellier II: Montpellier, France. |
[14] | Yao, A. B. 2015: Evaluation Des Potentialités en Eau du Bassin Versant de la Lobo en Vue D’une Gestion Rationnelle (Centre-ouest de la Côte d’Ivoire). Ph. D. Thesis, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire. |
[15] | Abiodun, B. J.; Lawal, K. A.; Salami, A. T.; Abatan, A. A., 2013: Potential influences of global warming on future climate and extreme events in Nigeria. Reg. Environ. Chang. 13, 477–491. |
[16] | Sylla M. B, Gaye, A. T., Jenkkins, G. S., Pal, J. S., and Giorgi, F., 2010: Consistency of projected drought over the Sahel with changes in the monsoon circulation and extremes in a regional climate model projections. Journal of Geophysical Research, VOL. 115, D16108, doi: 1029/2009JD012983. |
[17] | Barthony, J., Pongracz, R., Kovacs, G., Torma, C., 2010: Analysis of Regcm Simulations using A1B emission Scenario: estimated mean and extreme climate trends in the Carpathian basin. Vol. 12, EGU2010-13624. |
[18] | Mariotti, Laurh & Sylla, Mouhamdou & Coppola, Erika & A. Rauscher, S & Piani, Claudio & Giorgi, F., 2008: Dynamical Downscaling of climate change Projection over the African Region using the Regional Climate Model (Regcm3). AGU Fall Meeting Abstracts. |
[19] | Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, E. F. Stocker, D. B Wolff, 2007: The TRMM Multi-satellite Precipitation Analysis: Quasi-Global, Multi-Year, Combined-Sensor Precipitation Estimates at Fine Scale. J. Hydrometeor., 8: 38-55. |
[20] | Mitchell, T. D., Jones, P. D., 2005: An improved method of constructing a database of monthly climate observations and associated high resolution grids. Int. J. Climatol. 25: 693-712. |
[21] | Sibson, R., 1981: A brief description of natural neighbor interpolation, in interpreting multivariate data, edited by Barnett, pp. 21-36, John Wiley and Sons, Chichester, UK. |
[22] | Hofstra N., Haylock, M., Mark N., Phil J., Christoph F., 2008: Comparison of six methods for the interpolation of daily European climate data. Journal of Geophysical research, Vol. 113. |
[23] | Skamarock W, Klemp J. B, Dudhia J, Gill D, Barker D, Duda M, Huang X, Wang W, Powers J., 2008: A description of the advanced research WRF version 3. NCAR Technical Note, NCAR/TN-475 + STR. http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf. Accessed 17 September 2014. |
[24] | Heinzeller, D., Klein, C., Deing, D., Smiatek, G., Bliefernicht, J., 2015: The WASCAL regional climate simulations for West Africa: How to add value to existing climate projections. https://www.dkrz.de/mms/pdf/workshop_2015/poster_0726.pdf. |
[25] | Hong, S.-Y., Dudhia, J. and Chen, S.-H., 2004: A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Monthly Weather Review, 132, 103-120. |
[26] | Grell and Devenyi, 2002: GRL, in ARW, Version 3, Modeling System User’s Guide, January, 2015. |
[27] | Jonathan E. Pleim, 2007: A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. J. Appl. Meteor. Climatol. 46 (9): 1383-1395. |
[28] | Fei Chen and Jimy Dudhia, 2001: Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Monthly Weather Review, 129, 569-585. |
[29] | Eli J. Mlawer, Steven J. Taubman, Patrick D. Brown, Michael J. Iacono, Shepard A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres. Vol. 102, Issue D14. |
[30] | Dudhia J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46: 3077–3107. |
[31] | Klein, C., Heinzeller, D., Bliefermicht, J., Kunstmann, H., 2015: Variability of West Africa Monsoon patterns generated by a WRF multi-physics ensemble. ClimDyn. doi 10.1007/s00382-015-2505-5. |
[32] | Sylla M. B, Diallo I, Pal J. S, 2013: West African monsoon in state of-the-science regional climate models, climate variability—regional and thematic Patterns. Dr. AondoverTarhule (Ed.), ISBN: 978-953-51-1187-0, InTech, doi: 10.5772/55140. |
[33] | IPCC, 2014: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K Pachauri and L. A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. |
[34] | Berrisford, P., Kallberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A. J., Poli, P., and Sato, H., 2011: Atmospheric conservation properties in ERA-Interim, Q. J. Roy. Meteorol. Soc., 137, 1381–1399, doi: 10.1002/Qj.864. |
[35] | Sylla, M. B., 2015: Development and Analysis of Climatological Baseline and Climate Change Scenarios for Ecowas. Technical Report for United Nations University Institute for Natural Resources in Africa (UNU-INRA) Project: Climate Change, Agricultural Trade and Food Security in ECOWAS; United Nations University: Tokyo, Japan. |
[36] | Berg, A., de Noblet-Ducoudré, N., Sultan, B., Lengaigne, M., and Guimberteau, M., 2013: Projections of climate change impacts on potential C4 crop productivity over tropical regions, Agr. Forest Meteorol., 170, 89–102, doi: 10.1016/j.agrformet.2011.12.003. |
[37] | Biasutti, M. and Sobel, A. H., 2009: Delayed Sahel rainfall and global seasonal cycle in a warmer climate, Geophys. Res. Lett., 36, L23707, doi: 10.1029/2009gl041303. |
[38] | Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., 2007: Regional Climate Projections, in: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA. |
[39] | Kumambala, P. G., 2010: Sustainability of water resources development for Malawi with particular emphasis on North and Central Malawi. PhD thesis. http://theses.gla.ac.uk/1801/. |
[40] | Soro, G. E.; Yao, A. B.; Kouame, Y. M.; Goula Bi, T. A., 2017: Climate Change and its Impacts on Water Resources in the Bandama Basin, Cote d’Ivoire. Hydrology, 4, 18. |
[41] | Sylla, M. B.; Nikiema, P. M.; Gibba, P.; Kebe, I.; Klutse, N. A. B., 2016: Climate Change over West Africa: Recent Trends and Future Projections. In Adaptation to Climate Change and Variability in Rural West Africa; Yaro, A. J., Hesselberg, J., Eds.; Springer International Publishing: Cham, Switzerland, pp. 25–40. |
[42] | Mbaye, M. L.; Hagemann, S.; Haensler, A.; Stacke, T.; Gaye, A. T.; Afouda, A., 2015: Assessment of Climate Change Impact on Water Resources in the Upper Senegal Basin (West Africa). Am. J. Clim. Chang. 4, 77-93. |
[43] | Vigaud, N., Roucou, P., Fontaine, B., Sijikumar, S., and Tyteca, S., 2011: WRF/ARPEGE-CLIMAT simulated climate trends over West Africa, Clim. Dynam., 36, 925–944, doi: 10.1007/s00382-0090707-4. |
[44] | Sultan, B., Roudier, P., Quirion, P., Alhassane, A., Muller, B., 2013: Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa, Environ. Res. Lett., 8, 014040, doi: 10.1088/1748-9326/8/1/014040. |
[45] | IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Platner, M. Tignor, S. K Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge Uinersity Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. |
[46] | IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R. K and Reisinger, A.(eds.)]. IPCC, Geneva, Switzerland, 104 pp. |
[47] | Paturel, J. E., Ouedraogo, M., Servat, E., Mahe, G., Dezetter, A., and Boyer, J. F., 2003: The concept of rainfall and streamflow normals in West and Central Africa in a context of climatic variability, Hydrolog. Sci. J., 48, 125–138. |
[48] | Roudier, P.; Ducharne, A.; Feyen, L., 2014: Climate change impacts on runoff in West Africa: A review. Hydrol. Earth Syst. Sci., 18, 2789–2801. |
[49] | Lebel, T. and Ali, A., 2009: Recent trends in the Central and Western Sahel rainfall regime (1990–2007), J. Hydrol., 375, 52–64, doi: 10.1016/j.jhydrol.2008.11.030. |
[50] | Descroix, L., Moussa, I. B., Genthon, P., Sighomnou, D., Mahé, G., 2013: Impact of Drought and Land – Use Changes on Surface – Water Quality and Quantity: The Sahelian Paradox, Curr. Perspect. Contam. Hydrol. Water Res. Sustain., in: Current Perspectives in Contaminant Hydrology and Water Resources Sustainability, chap. 10, edited by: Bradley, P. M., 243–271, doi: 10.5772/54536. |
[51] | Mahe, G., Lienou, G., Descroix, L., Bamba, F., Paturel, J. E., 2013: The rivers of Africa: witness of climate change and human impact on the environment, Hydrol. Process. 27, 2105–2114, doi: 10.1002/hyp.9813. |
[52] | Amani, A., Thomas, J., Mamouda, M. N. A., Afouda, A., Ndiaye, T., 2007: Climate Change Adaptation and Water Resources Management in West Africa. Syntheis Report-WRITESHOP. |
APA Style
Edward Naabil, Benjamin Lantei Lamptey, Kouakou Kouadio, Thompson Annor. (2020). Climate Change Impact on Water Resources; The Case of Tono Irrigation Dam in Ghana. Hydrology, 8(4), 69-78. https://doi.org/10.11648/j.hyd.20200804.12
ACS Style
Edward Naabil; Benjamin Lantei Lamptey; Kouakou Kouadio; Thompson Annor. Climate Change Impact on Water Resources; The Case of Tono Irrigation Dam in Ghana. Hydrology. 2020, 8(4), 69-78. doi: 10.11648/j.hyd.20200804.12
AMA Style
Edward Naabil, Benjamin Lantei Lamptey, Kouakou Kouadio, Thompson Annor. Climate Change Impact on Water Resources; The Case of Tono Irrigation Dam in Ghana. Hydrology. 2020;8(4):69-78. doi: 10.11648/j.hyd.20200804.12
@article{10.11648/j.hyd.20200804.12, author = {Edward Naabil and Benjamin Lantei Lamptey and Kouakou Kouadio and Thompson Annor}, title = {Climate Change Impact on Water Resources; The Case of Tono Irrigation Dam in Ghana}, journal = {Hydrology}, volume = {8}, number = {4}, pages = {69-78}, doi = {10.11648/j.hyd.20200804.12}, url = {https://doi.org/10.11648/j.hyd.20200804.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.hyd.20200804.12}, abstract = {West Africa (WA) in recent past experienced decreasing rainfall and increasing temperature. A preliminary assessment of these trends in the future (2025-2045) was conducted to evaluate its potential impact on water resources, specifically the Tono irrigation dam in Ghana. The climate change assessment was based on future climate data of Representative Concentration Pathways (RCPs) 4.5 and 8.5 projected with ECHAM6 model and downscaled by the Weather Research and Forecasting (WRF) model in reference with historical data (1990-2010). A 2-domain configuration was used: an outer domain at 25 km horizontal resolution encompassing the West African Region and an inner domain at 5 km horizontal resolution centered on the Tono basin. The assessment was done based on the annual mean, relative percentage change and spatial seasonal change of the simulated precipitation and temperature. The results show that for precipitation, both scenarios do not agree on the signal of change. RCP4.5 indicates an increase (+7%) in annual precipitation amount whereas RCP 8.5 indicates a decrease (-9.6%). For temperature, both scenarios agree on increasing temperature. These results shows that future streamflow will be influenced by climate change. The indications are that the flows will reduce does the dam levels will also reduce does affecting irrigation activities. This studies therefore provides information to the managers of Tono irrigation dam what measures to put in place for its sustainability.}, year = {2020} }
TY - JOUR T1 - Climate Change Impact on Water Resources; The Case of Tono Irrigation Dam in Ghana AU - Edward Naabil AU - Benjamin Lantei Lamptey AU - Kouakou Kouadio AU - Thompson Annor Y1 - 2020/11/30 PY - 2020 N1 - https://doi.org/10.11648/j.hyd.20200804.12 DO - 10.11648/j.hyd.20200804.12 T2 - Hydrology JF - Hydrology JO - Hydrology SP - 69 EP - 78 PB - Science Publishing Group SN - 2330-7617 UR - https://doi.org/10.11648/j.hyd.20200804.12 AB - West Africa (WA) in recent past experienced decreasing rainfall and increasing temperature. A preliminary assessment of these trends in the future (2025-2045) was conducted to evaluate its potential impact on water resources, specifically the Tono irrigation dam in Ghana. The climate change assessment was based on future climate data of Representative Concentration Pathways (RCPs) 4.5 and 8.5 projected with ECHAM6 model and downscaled by the Weather Research and Forecasting (WRF) model in reference with historical data (1990-2010). A 2-domain configuration was used: an outer domain at 25 km horizontal resolution encompassing the West African Region and an inner domain at 5 km horizontal resolution centered on the Tono basin. The assessment was done based on the annual mean, relative percentage change and spatial seasonal change of the simulated precipitation and temperature. The results show that for precipitation, both scenarios do not agree on the signal of change. RCP4.5 indicates an increase (+7%) in annual precipitation amount whereas RCP 8.5 indicates a decrease (-9.6%). For temperature, both scenarios agree on increasing temperature. These results shows that future streamflow will be influenced by climate change. The indications are that the flows will reduce does the dam levels will also reduce does affecting irrigation activities. This studies therefore provides information to the managers of Tono irrigation dam what measures to put in place for its sustainability. VL - 8 IS - 4 ER -