The Monoun Maar Volcano (MMV) is a polygenetic small-volume volcano within the Cameroon Volcanic Line (CVL), characterized by volcanic eruptions and CO2-rich fluid interactions. Among its deposit sequence, a pyroclastic deposit unit is identified containing encrustations of ferrous carbonates, whose associated iron and genetic links remain poorly constrained. This study integrates petrographic, stable δ13C and δ18O isotopes, and palaeosalinity-paleotemperature modelling to elucidate the origin of siderite within this pyroclastic ejecta. Siderite occurs as pale yellow-brown massive aggregates within or at the border of some clasts, associated with pyroxene, plagioclase, and olivine. Isotopic data show δ13CVPDB values ranging from -6.0 to -5.2‰, consistent with a magmatic CO2 source or the oxidative degradation of organic matter. δ18OVSMOW values are relatively high, around 31.4 to 32.3‰, suggesting a freshwater depositional environment influenced by meteoric water and magmatic CO2. These isotopic values are also consistent with an authigenic carbonate formation likely affected by CO2 emissions from submerged volcanic chimneys, although an allogenic origin might also be considered. Calculated palaeosalinity (Z = 115.2 to 117.34‰) is quite high, indicating saline hydrothermal fluids. Calculated paleotemperatures (T = 247.93 to 248.03°C) are consistent with hydrothermal systems or magmatic-hydrothermal interactions. The calculated palaeosalinity and paleotemperatures support the involvement of high-temperature, CO2-rich fluids interacting with sediments and tephra from earlier eruptive phases at the bottom of the MMV crater. These findings contribute to a better understanding of the polygenetic eruptive evolution of the Monoun maar and highlight the role of carbonate mineralization in such volcanic settings.
Published in | Earth Sciences (Volume 14, Issue 4) |
DOI | 10.11648/j.earth.20251404.14 |
Page(s) | 160-171 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Cameroon Volcanic Line, Monoun Maar Volcano, Siderite, Stable Isotopes, Palaeosalinity, Palaeotemperature
Sample | δ13CVPDB | δ18OVSMOW | δ18OVPDB | Z (‰) | T (°C) |
---|---|---|---|---|---|
MB57 | -5.2 | 32.3 | 1.38 | 117.34 | 247.93 |
MB58 | -6.0 | 31.4 | 0.47 | 115.25 | 248.03 |
MMV | Monoun Maar Volcano |
CVL | Cameroon Volcanic Line |
VPDB | Vienna Pee Dee Belemnite |
VSMOW | Vienna Standard Mean Ocean Water |
Z | Palaeosalinity |
T | Paleotemperature |
[1] | Allan, J. R., Mathews, R. K., 1982. Isotope signatures associated with early meteoric diagenesis. Sedimentology, 29, 797-817. |
[2] | Aziwo, B. T., Tamen, J., Tchamabé, B. C., Asaah, A. N. E., Yangouo, F. K., Dongmo, B. S. Z., Tabengo, M. Z., Tedonkenfack, S. S. -T., 2022. Tephrostratigraphy and morphometry of Wum Maar Volcano (Oku Volcanic Group- Cameroon Volcanic line): Implications for complex monogenetic volcanoes. Journal of African Earth Sciences, 188, pp. 19. |
[3] | Bowman, J. R., 1998. Stable-isotope systematics of skarns. In: Lentz, D. R. (Ed.), Mineralized Intrusion-Related Skarn Systems. Mineralogical Association of Canada Short Course, 26, 99-145. |
[4] | Cerling, T. E., Quade, J., 1993. Stable carbon and oxygen isotopes in soil carbonates. In: Swart, P., McKenzie, J. A., Lohman, K. C. (Eds.). American Geophysical Union Monograph, 78, 217-231. |
[5] | Chelnokov, G. A., Kharitonova, N. A., Bragin, I. V., 2013. Composition and genesis of the gases of the carbon mineral waters in the southern part of the Russian Far East, Izvestiya Vuzov. Geologiya i Razvedka, 5, 42-46. |
[6] | Coplen, T. B., Kendall, C., Hopple, J., 1983. Comparison of stable isotope reference standards. Nature, 302, 236-238. |
[7] | Dai, S., Nechaev, V. P., Chekryzhov, I. Y., Zhao, L., Vysotskiy, S. V., Graham, I., Ward, C. R., Ignatiev, A. V., Velivetskaya, T. A., Zhao, L., 2018. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes. Lithos, 302, 359-369. |
[8] | Dawson, G. K. W., Golding, S. D., Boreham, C. J., Mernagh, T., 2013. Authigenic carbonates as natural analogues of mineralisation trapping in CO2 sequestration. In: Cooperative Research Centre for Greenhouse Gas Technologies, vols. RPT13-4602. CO2CRC Publication Number, Canberra, Australia (75 pp). |
[9] | Demény, A., Ahijado, A., Casillas, R., Vennemann, T., 1998. Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): a C, O, H isotope study. Lithos, 44, 101-115. |
[10] | Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary cycling and environmental change in the late Proterozoic: evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta, 56, 1317-1329. |
[11] | Du, L. -J., Li, B., Huang, Z. -L., Zhou, J. -X., Zou, G. -F., Yan, Z. -F., 2017. Carbon-oxygen isotopic geochemistry of the Yangla Cu skarn deposit, SW China: Implications for the source and evolution of hydrothermal fluids. Ore Geology Reviews, 88, 809-821. |
[12] | Fouepe, T. A., Ntchantcho, R., Saiki, K., Ohba, T., Kamtchueng, B., Tanyileke, G., Fraleu, B., Hell, J., 2019. New insights into volume estimates and gas contents from the acoustic investigation at Lake Monoun, Cameroon. Journal of African Earth Sciences, 160, 8pp. |
[13] | Giggenbach, W. F. Sano, Y., Schmincke, H. U., 1991. CO2-rich gases from Lakes Nyos and Monoun, Cameroon; Laecher See, Germany; Dieng, Indonesia, and Mt. Gambier, Australia-variations on a common theme. Journal of Volcanology and Geothermal Research, 45, 311-323. |
[14] | Guilbert, J. M., Park Jr., C. F., 1986. The Geology of Ore Deposits. Freeman, W. H., 4th edition, pp 985. |
[15] | Hoefs, J., 2009. Stable Isotope Geochemistry. Berlin Heidelberg, 285, 191-207. |
[16] | Houghton, B. F. and Schmincke, H. -U., 1986. Mixed deposits of simultaneous strombolian and phreatomagmatic volcanism: Rothenberg volcano, east Eifel volcanic field. Journal of Volcanology and Geothermal Research, 30, 117-130. |
[17] | Hu, R., Fu, S., Huang, Y., Zhou, M. -F., Fu, S., Zhao, C., Wang, Y., Bi, X., Xiao, J., 2017. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. Journal of Asian Earth Sciences, 137, 9-34. |
[18] | Huang, X. -W., Qi, L., Meng, Y. -M., Chen, D., Ling, H. -D., 2015. Origin of siderite mineralization in western Guizhou, SW China: Constrains from REEs, C, O, Sr and S isotopes. Ore Geology Reviews, 66, 252-265. |
[19] | Issa, Ohba, T., Fantong, W., Fouepe, A., Tchamabé, B. C., Yoshida, Y., Kusakabe, M., Sigha, N., Tsunogai, U., Oginuma, Y., Tanyileke, G., Satake, H., Hell, J. V., 2013. Contribution of methane to total gas pressure in deep waters at lake Nyos and Monoun (Cameroon, West Africa). Geochemical Journal, 47, 349-362. |
[20] | Issa, Ohba, T., Tchamabé, B. C., Padrón, E., Hernández, P., Eneke Takem, E. G., Barrancos, J., Sighomnoun, D., Ooki, S., Nkamdjou, S., Kusakabe, M., Yoshida, Y., Dionis, S., 2014a. Gas emission from diffuse degassing structures (DDS) of the Cameroon volcanic line (CVL): Implications for the prevention of CO2-related hazards. Journal of Volcanology and Geothermal Research, 283, 82-93. |
[21] | Kamtchueng, B. T., Fantong, W. Y., Wirmvem, M. J., Tiodjio, R. E., Takounjou, A. F., Ndam, N. J. R., Kusakabe, M., Zhang, J. Ohba, T., Tanyileke, G., Hell, J. V., Ueda, A., 2016. Hydrogeochemistry and quality of surface water and groundwater in the vicinity of Lake Monoun, West Cameroon: approach from multivariate statistical analysis and stable isotopic characterization. Environmental Monitoring and Assessment, 524, 24pp. |
[22] | Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., 1993. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 120, 409-430. |
[23] | Keith, M., Weber, J., 1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28, 1787-1816. |
[24] | Kling, G. W., 1988. Comparative transparency, depth of mixing, and stability of stratification in lakes of Cameroon, West Africa. Limnology and Oceanography, 33(1), 27-40. |
[25] | Kling, G. W., Evans, W. C., Tanyileke, G. Z., 2015. The Comparative Limnology of lakes Nyos and Monoun, Cameroon. In: Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J., (eds.) Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg, 401-425. |
[26] | Kusakabe, M., Ohsumi, T., Aramaki, S., 1989. The Lake Nyos gas disater: chemical and isotopic evidence in waters and dissolved gaases from three Cameroonian crater lakes, Nyos, Monoun and Wum. Journal of Volcanology and Geothermal Research, 39, 167-185. |
[27] | Kusakabe, M., 2015. Evolution of CO2 content in Lakes Nyos and Monoun, and Sub-lacustrine CO2-recharge system at Lake Nyos as envisaged from CO2/3He ratios and Noble gas signatures. In: Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J., (eds.) Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg, 427-450. |
[28] | Li, X., Xu, W., Liu, W., Zhou, Y., Wang, Y., Sun, Y., Liu, L., 2013. Climatic and environmental indications of carbon and oxygen isotopes from the lower cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 385, 171-189. |
[29] | Lorenz, V., 1973. On the formation of Maars. Bulletin of Volcanology, 37, 183-204. |
[30] | Lorenz, V., 1985. Maars and diatremes of phreatomagmatic origin: a review. S. Afr. J. Geol., 88(2), 459-70. |
[31] | Lorenz, V., 1986. On the growth of maar and diatremes and its relevance to the formation of tuff rings. Bulletin of Volcanology, 48(5), 265-74. |
[32] | Makilo, R., 1982. Etude des Sols Développés sur Matériaux Volcaniques Récents dans un secteur de L'Ouest-Cameroun -Region de Foumbot). Office de la Recherche Scientifique et Technique Outre-Mer, Mission ORSTROM Yaoundé. |
[33] | McClintock, M., White, J. D. L., Houghton, B. F., Skilling, I. P., 2008. Physical Volcanology of a Large CraterComplex Formed during the Initial Stages of Karoo Flood Basalt Volcanism, Sterkspruit, Eastern Cape, South Africa. Journal of Volcanology and Geothermal Research, 172, 93-111. |
[34] | Liu, J. M., Liu, J. J., Gu, X. X., 1997. Basinal fluid genetic model of fne disseminated gold deposits in the golden triangle area between Yunnan, Guizhou and Guangxi. Acta Petrologica et Mineralogica, 17, 448-456. |
[35] | Nechaev, V., Chekryzhov, I. Y., Vysotskiy, S., Ignatiev, A., Velivetskaya, T., Tarasenko, I., Agoshkov, A., 2018. Isotopic signatures of REY mineralization associated with lignite basins in South Primorye, Russian Far East. Ore Geology Reviews, 103, 68-77. |
[36] | Nechaev, V. P., Dai, S., Zhao, L., Moore, T. A., Nechaeva, E. V., 2021. The Tarim Basin, China, a prospect for plume-related Zr (Hf)-Nb (Ta)-REY-Ga-U mineralization. Ore Geology Reviews, 133, 104081. |
[37] | Nche, L. A., Hasegawa, T., Aka, F. T., Ohba, T., Mafany, G. T., Németh, K., Miyabuchi, Y., Asaah, A. N. E., Wajiba, P. M., Ngwa, C. N., Tchop, J. L., Nguet, P. W., Nfomou, N., Suh, C. E., Fantong, W. Y., Mouncherou, F. O., 2025. Volcanic history and magma systems of Lake Monoun Polygenetic Maar, Noun Plain, Western part of the Cameroon Volcanic Line: Constraints from stratigraphy, chronology and dgeochemistry. Journal of Volcanology and Geothermal Research, 460, 108265. |
[38] | Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical Press, Wiley, New York, pp 352. |
[39] | Schopf, T. J. M., 1980. Paleoceanography. Harvard University Press, Cambridg, MA (figs, tables) 341 pp. |
[40] | Shackleton, N. J., 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. In: Initial Reports of Deep Sea Drilling Project, 29, 743-756. |
[41] | Shen, Y., Qin, Y., Li, Z., Jin, J., Wei, Z., Zheng, J., Zhang, T., Zong, Y., Wang, X., 2017. The sedimentary origin and geological signifcance of siderite in the Longtan Formation of western Guizhou Province. Earth Science Frontiers, 24, 152-161. |
[42] | Sigurdsun, H., Devine, F. M., Tchoua, T. S., Pringle, M. K. W., Evans, W. C., 1987. Origin of the lethal gas burst from lake Monoun, Cameroon. Journal of Geothermal Research, 31, 1-16. |
[43] | Stix, J. and de Moor, J. M., 2018. Understanding and forcasting phreatic eruptions driven by magmatic degassing. Earth, Planets and Space, 70(83), 19 pp. |
[44] | Sturesson, U., Heikoop, J., Risk, M., 2000. Modern and Palaeozoic iron ooids-a similar volcanic origin. Sedimentary Geology, 136, 137-146. |
[45] | Tanyileke, G., Ntchantcho, R., Fantong, W. Y., Aka, F. T., Hell, J. V., 2019. 30 years of the Lakes Nyos and Monoun gas disaters: A scientific, technological, institutional and social adventure. Journal of African Earth Sciences, 150, 415-424. |
[46] | Taylor, J., H. P., Frechen, J., Degens, E. T., 1967. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Aln District, Sweden. Geochimica et Cosmochimica Acta, 31, 407-430. |
[47] | Tchamabé, B. C., Youmen, D., Owona, S., Issa, Ohba, T., Németh, K., Ngapna, M. S., Asaah, A. N. E., Aka, F. T., Tanyileke, G., Hell, J. V., 2013. Eruptive history of Barombi Mbo maar, Cameroon Volcanic Line, Central Africa: Constraints from volcanic facies analysis. Central European Journal of Geosciences, 5(4), 480-496. |
[48] | Tchamabé, B. C., Ohba, T., Kereszturi, G, Németh, K. Aka, F. T., Youmen, D., Issa, Miyabuchi, Y., Ooki, S., Tanyileke, G., Hell, J. V. 2015. Towards the reconstruction of the shallow plumbing system of the Barombi Mbo Maar (Cameroon): Implications for diatreme growth processes of a polygenetic maar volcano. Journal of Volcanology and Geothermal Research, 301, 293-313. |
[49] | van Dijk, J., Fernandez, A., Müller, I. A., Lever, M., Bernasconi, S. M., 2018. Oxygen isotope fractionation in the siderite-water system between 8.5 and 62°C. Geochimica et Cosmochimica Acta, 220, 535-551. |
[50] | Wandji, P., 1995. Le volcanisme récent de la plaine du Noun (Ouest-Cameroun). Volcanologie, Pétrologie, Géochimie et Pouzzolanité. Thèse Doctorat d'Etat de L'Université Yaoundé I, Cameroun, pp. 295. |
[51] | Wang, N., Dai, S., Nechaev, V. P., French, D., Graham, I. T., Zhao, F., Zuo, J., 2022. Isotopes of carbon and oxygen of siderite and their genetic indications for the Late Permian critical-metal tuffaceous deposits (Nb-Zr-REY-Ga) from Yunnan, southwestern China. Chemical Geology, 592, 120727. |
[52] | White, J. D. L. and Ross, S. P., 2011. Maar-diatreme volcanoes: A review. Journal of Volcanology and Geothermal Research, 201(1-4), 1-29. |
[53] | Wohletz, K. H. and Sheridan, M. F., 1983. Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones. American Journal of Science, 283, 385-413. |
[54] | Zhang, G., 1997. Analysis of paleoenvironment and sea level change using sedimentary geochemical characteristics: A case study of the Middle and Lower Cambrian in eastern Shandong Province. Land and Resources, 9-13. |
[55] | Zhao, L., Dai, S., Graham, I. T., Li, X., Liu, H., Song, X., Hower, J. C., Zhou, Y., 2017a. Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: Mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin. Ore Geology Reviews, 80, 116-140. |
[56] | Zhou, J. -X., Huang, Z. -L., Lv, Z. -C., Zhu, X. -K., Gao, J. -G., Mirnejad, H., 2014. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, Southwest China. Ore Geology Reviews, 63, 209-225. |
[57] | Zhuo, Y., Hu, R., Xiao, J., Zhao, C., Huang, Y., Yan, J., Li, J., Gao, W., Li, J., 2019. Trace elements and CO isotopes of calcite from Carlin-type gold deposits in the Youjiang Basin, SW China: Constraints on ore-forming fluid compositions and sources. Ore Geology Reviews, 113, 103067. |
APA Style
Cédrique, K. S., Pierre, W., Suh, C. E., Boris, C., Vohnyui, C. M., et al. (2025). Pre-Eruptive CO2-Rich Fluid Interactions and Siderite Genesis at the Monoun Maar Volcano, Cameroon Volcanic Line: Insights from Stable Carbon and Oxygen Systematic. Earth Sciences, 14(4), 160-171. https://doi.org/10.11648/j.earth.20251404.14
ACS Style
Cédrique, K. S.; Pierre, W.; Suh, C. E.; Boris, C.; Vohnyui, C. M., et al. Pre-Eruptive CO2-Rich Fluid Interactions and Siderite Genesis at the Monoun Maar Volcano, Cameroon Volcanic Line: Insights from Stable Carbon and Oxygen Systematic. Earth Sci. 2025, 14(4), 160-171. doi: 10.11648/j.earth.20251404.14
AMA Style
Cédrique KS, Pierre W, Suh CE, Boris C, Vohnyui CM, et al. Pre-Eruptive CO2-Rich Fluid Interactions and Siderite Genesis at the Monoun Maar Volcano, Cameroon Volcanic Line: Insights from Stable Carbon and Oxygen Systematic. Earth Sci. 2025;14(4):160-171. doi: 10.11648/j.earth.20251404.14
@article{10.11648/j.earth.20251404.14, author = {Kouokam Sado Cédrique and Wotchoko Pierre and Cheo Emmanuel Suh and Chako-Tchamabé Boris and Chenyi Marie-Louise Vohnyui and Guedjeo Christian Suh and Fantong Wilson Yetoh and Farouk Oumar Mouncherou}, title = {Pre-Eruptive CO2-Rich Fluid Interactions and Siderite Genesis at the Monoun Maar Volcano, Cameroon Volcanic Line: Insights from Stable Carbon and Oxygen Systematic }, journal = {Earth Sciences}, volume = {14}, number = {4}, pages = {160-171}, doi = {10.11648/j.earth.20251404.14}, url = {https://doi.org/10.11648/j.earth.20251404.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.earth.20251404.14}, abstract = {The Monoun Maar Volcano (MMV) is a polygenetic small-volume volcano within the Cameroon Volcanic Line (CVL), characterized by volcanic eruptions and CO2-rich fluid interactions. Among its deposit sequence, a pyroclastic deposit unit is identified containing encrustations of ferrous carbonates, whose associated iron and genetic links remain poorly constrained. This study integrates petrographic, stable δ13C and δ18O isotopes, and palaeosalinity-paleotemperature modelling to elucidate the origin of siderite within this pyroclastic ejecta. Siderite occurs as pale yellow-brown massive aggregates within or at the border of some clasts, associated with pyroxene, plagioclase, and olivine. Isotopic data show δ13CVPDB values ranging from -6.0 to -5.2‰, consistent with a magmatic CO2 source or the oxidative degradation of organic matter. δ18OVSMOW values are relatively high, around 31.4 to 32.3‰, suggesting a freshwater depositional environment influenced by meteoric water and magmatic CO2. These isotopic values are also consistent with an authigenic carbonate formation likely affected by CO2 emissions from submerged volcanic chimneys, although an allogenic origin might also be considered. Calculated palaeosalinity (Z = 115.2 to 117.34‰) is quite high, indicating saline hydrothermal fluids. Calculated paleotemperatures (T = 247.93 to 248.03°C) are consistent with hydrothermal systems or magmatic-hydrothermal interactions. The calculated palaeosalinity and paleotemperatures support the involvement of high-temperature, CO2-rich fluids interacting with sediments and tephra from earlier eruptive phases at the bottom of the MMV crater. These findings contribute to a better understanding of the polygenetic eruptive evolution of the Monoun maar and highlight the role of carbonate mineralization in such volcanic settings. }, year = {2025} }
TY - JOUR T1 - Pre-Eruptive CO2-Rich Fluid Interactions and Siderite Genesis at the Monoun Maar Volcano, Cameroon Volcanic Line: Insights from Stable Carbon and Oxygen Systematic AU - Kouokam Sado Cédrique AU - Wotchoko Pierre AU - Cheo Emmanuel Suh AU - Chako-Tchamabé Boris AU - Chenyi Marie-Louise Vohnyui AU - Guedjeo Christian Suh AU - Fantong Wilson Yetoh AU - Farouk Oumar Mouncherou Y1 - 2025/08/29 PY - 2025 N1 - https://doi.org/10.11648/j.earth.20251404.14 DO - 10.11648/j.earth.20251404.14 T2 - Earth Sciences JF - Earth Sciences JO - Earth Sciences SP - 160 EP - 171 PB - Science Publishing Group SN - 2328-5982 UR - https://doi.org/10.11648/j.earth.20251404.14 AB - The Monoun Maar Volcano (MMV) is a polygenetic small-volume volcano within the Cameroon Volcanic Line (CVL), characterized by volcanic eruptions and CO2-rich fluid interactions. Among its deposit sequence, a pyroclastic deposit unit is identified containing encrustations of ferrous carbonates, whose associated iron and genetic links remain poorly constrained. This study integrates petrographic, stable δ13C and δ18O isotopes, and palaeosalinity-paleotemperature modelling to elucidate the origin of siderite within this pyroclastic ejecta. Siderite occurs as pale yellow-brown massive aggregates within or at the border of some clasts, associated with pyroxene, plagioclase, and olivine. Isotopic data show δ13CVPDB values ranging from -6.0 to -5.2‰, consistent with a magmatic CO2 source or the oxidative degradation of organic matter. δ18OVSMOW values are relatively high, around 31.4 to 32.3‰, suggesting a freshwater depositional environment influenced by meteoric water and magmatic CO2. These isotopic values are also consistent with an authigenic carbonate formation likely affected by CO2 emissions from submerged volcanic chimneys, although an allogenic origin might also be considered. Calculated palaeosalinity (Z = 115.2 to 117.34‰) is quite high, indicating saline hydrothermal fluids. Calculated paleotemperatures (T = 247.93 to 248.03°C) are consistent with hydrothermal systems or magmatic-hydrothermal interactions. The calculated palaeosalinity and paleotemperatures support the involvement of high-temperature, CO2-rich fluids interacting with sediments and tephra from earlier eruptive phases at the bottom of the MMV crater. These findings contribute to a better understanding of the polygenetic eruptive evolution of the Monoun maar and highlight the role of carbonate mineralization in such volcanic settings. VL - 14 IS - 4 ER -