The generalized Mycielskians are the generalization of the Mycielski graphs, which were introduced by Mycielski in 1955. A topological index is a numeric parameter mathematically derived from a graph and is invariant under automorphism of graphs. Topological indices are widely used for establishing correlations between the structure of a molecular compound and its different physico-chemical properties. This paper investigates different degree-based topological indices of the generalized Mycielskians of G.
Published in | International Journal of Discrete Mathematics (Volume 2, Issue 3) |
DOI | 10.11648/j.dmath.20170203.19 |
Page(s) | 112-118 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Topological Index, Degree of a Vertex, Generalized Mycielskian Graphs, Graph Operations
[1] | I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538. |
[2] | B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (4) (2015) 1184-1190. |
[3] | N. De, S. M. A. Nayeem and A. Pal, F-index of some graph operations, Discret. Math. Algorithms Appl. (2016), doi: 10.1142/S1793830916500257. |
[4] | N. De, S. M. A. Nayeem and A. Pal, The F-coindex of some graph operations, SpringerPlus 5: 221 (2016), doi: 10.1186/s40064-016-1864-7. |
[5] | N. De, S. M. A. Nayeem, Computing the F-index of nanostar dendrimers, Pacific Science Review A: Natural Science and Engineering, doi: 10.1016/j.psra.2016.06.001. |
[6] | N. De, F-index of total transformation graphs, arXiv: 1606.05989. |
[7] | H. Abdo, D. Dimitrov and I. Gutman, On extremal trees with respect to the F-index, arXiv: 1509.03574v2. |
[8] | N. De, F-index of bridge and chain graphs, Mal. J. Fund. Appl. Sci., 12 (4), 2016, 109-113. |
[9] | A. Miličević, S. Nikolić, and N. Trinajstić, On reformulated Zagreb indices, Mol. Divers., 8 (4), 2004, 393–399. |
[10] | B. Zhou, N. Trinajstić, Some properties of the reformulated Zagreb indices, J. Math. Chem., 48 (3), 2010, 714–719. |
[11] | A. Ilić, B. Zhou, On reformulated Zagreb indices, Discret. Appl. Math., 160 (3), 2012, 204–209. |
[12] | G. Su, L. Xiong, L. Xu, and B. Ma, On the maximum and minimum first reformulated Zagreb index of graphs with connectivity at most k, Filomat, 25 (4), 2011, 75–83. |
[13] | N. De, Some bounds of reformulated Zagreb indices, Appl. Math. Sci., 6 (101), 2012, 5005–5012. |
[14] | N. De, Reformulated Zagreb indices of dendrimers, Math. Aeterna, 3 (2), 2013, 133-138. |
[15] | N. De, S. M. A. Nayeem, and A. Pal, Reformulated first Zagreb index of some graph operations, Mathematics 3 (4), 2015, 945-960. |
[16] | G. H. Shirdel, H. Rezapour and A. M. Sayadi, The hyper-Zagreb index of graph operations, Iran. J. Math. Chem., 4 (2), 2013, 213-220. |
[17] | M. Veylaki, M. J. Nikmehr and H. A. Tavallaee, The third and hyper-Zagreb coindices of some graph operations, J. Appl. Math. Comput., 50 (1-2), 2016, 315–325. |
[18] | B. Basavanagoud, S. Patil, A note on Hyper-Zagreb index of graph operations, Iran. J. Math. Chem., 7 (1), 2016, 89-92. |
[19] | M. R. Farahani, Computing the hyper-Zagreb index of hexagonal nanotubes, J. Chem. Mate. Res., 2 (1), 2015, 16-18. |
[20] | W. Gao, W. Wang and M. R. Farahani, Topological Indices Study of Molecular Structure in Anticancer Drugs, J. Chem. (2016), http://dx.doi.org/10.1155/2016/3216327. |
[21] | J. Mycielski, Sur le coloriage des graphes, Colloq. Math., 3, 1955, 161–162. |
[22] | M. Caramia, P. Dell Olmo, A lower bound on the chromatic number of Mycielski graphs, Discrete Math., 235 (1-2), 2001, 79–86. |
[23] | V. Chvatal, The minimality of the Mycielski graph, Lecture Notes in Math., 406, 1974, 243–246. |
[24] | K. L. Collins, K. Tysdal, Dependent edges in Mycielski graphs and 4-colorings of 4- skeletons, J. Graph Theory, 46 (4), 2004, 285–296. |
[25] | A. Jerline, Dhanalakshmi K and B. Michaelraj L, The first and the second Zagreb indices of the generalized Mycielskian of graphs, Elect. Notes Discrete Math., 53, 2016, 239–258. |
[26] | M. O. Albertson, The Irregularity of a graph, Ars Comb., 46, 1997, 219--225. |
[27] | H. Abdo, D. Dimitrov, The irregularity of graphs under graph operations, Discuss. Math. Graph Theory, 34 (2), 2014, 263--278. |
[28] | F. K. Bell, A note on the irregularity of graphs, Linear Algebra Appl., 161, 1992, 45--54. |
[29] | M. Tavakoli, F. Rahbarnia and A. R. Ashrafi, Some new results on irregularity of graphs, J. Appl. Math. Informatics, 32, 2014, 675--685. |
[30] | N. De, A. Pal and S. M. A. Nayeem, The irregularity of some composite graphs, Int. J. Appl. Comput. Math., 2 (3), 2016, 411–420, DOI 10.1007/s40819-015-0069-z. |
[31] | W. Luo, B. Zhou, On the irregularity of trees and unicyclic graphs with given matching number, Util. Math., 83, (2010), 141-147. |
APA Style
Nilanjan De. (2017). Computing Certain Topological Indices of Generalised Mycielskian Graphs. International Journal of Discrete Mathematics, 2(3), 112-118. https://doi.org/10.11648/j.dmath.20170203.19
ACS Style
Nilanjan De. Computing Certain Topological Indices of Generalised Mycielskian Graphs. Int. J. Discrete Math. 2017, 2(3), 112-118. doi: 10.11648/j.dmath.20170203.19
@article{10.11648/j.dmath.20170203.19, author = {Nilanjan De}, title = {Computing Certain Topological Indices of Generalised Mycielskian Graphs}, journal = {International Journal of Discrete Mathematics}, volume = {2}, number = {3}, pages = {112-118}, doi = {10.11648/j.dmath.20170203.19}, url = {https://doi.org/10.11648/j.dmath.20170203.19}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.dmath.20170203.19}, abstract = {The generalized Mycielskians are the generalization of the Mycielski graphs, which were introduced by Mycielski in 1955. A topological index is a numeric parameter mathematically derived from a graph and is invariant under automorphism of graphs. Topological indices are widely used for establishing correlations between the structure of a molecular compound and its different physico-chemical properties. This paper investigates different degree-based topological indices of the generalized Mycielskians of G.}, year = {2017} }
TY - JOUR T1 - Computing Certain Topological Indices of Generalised Mycielskian Graphs AU - Nilanjan De Y1 - 2017/04/14 PY - 2017 N1 - https://doi.org/10.11648/j.dmath.20170203.19 DO - 10.11648/j.dmath.20170203.19 T2 - International Journal of Discrete Mathematics JF - International Journal of Discrete Mathematics JO - International Journal of Discrete Mathematics SP - 112 EP - 118 PB - Science Publishing Group SN - 2578-9252 UR - https://doi.org/10.11648/j.dmath.20170203.19 AB - The generalized Mycielskians are the generalization of the Mycielski graphs, which were introduced by Mycielski in 1955. A topological index is a numeric parameter mathematically derived from a graph and is invariant under automorphism of graphs. Topological indices are widely used for establishing correlations between the structure of a molecular compound and its different physico-chemical properties. This paper investigates different degree-based topological indices of the generalized Mycielskians of G. VL - 2 IS - 3 ER -