| Peer-Reviewed

The PI(Padmakar-Ivan) Index of Polyominoes

Received: 19 September 2016     Accepted: 18 November 2016     Published: 26 December 2016
Views:       Downloads:
Abstract

The Padmakar – Ivan (PI) index of polyominoes is examined.Efficient calculations of formulas for PI index for the polyominoes are put forward. In chemical graph theory, the PI index is a topological indexof a graph G is defined as , where for edge e = xy, n1 (e) is the number of edges of G lying closer to x than y, n2 (e) is the number of edges of G lying closer to y than x and summation goes over all edges of G. The edges equidistant from x and y are not considered for the calculation of PI index. In this paper, we calculated the PI index of polyominoes like square Polyomino, L-Polyomino,T-Polyomino, Straight-Polyomino and Skew-Polyomino.

Published in International Journal of Discrete Mathematics (Volume 1, Issue 1)
DOI 10.11648/j.dmath.20160101.11
Page(s) 1-4
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2016. Published by Science Publishing Group

Previous article
Keywords

Molecular Graph, Polyominoes, Topological Indices, PI (Padmakar-Ivan)Index

References
[1] D. A. Klarner, Polyominoes, in: J.E. Goodman, J. O’Rourke (Eds.), Handbook of Discrete and Computational Geometry, CRC Press LLC, 1997, pp. 225–242 (Chapter 12).
[2] P.E. John, P.V. Khadikar, J. Singh, A method of computing the PI index of benzenoid hydrocarbons using orthogonal cuts, J. Math. Chem. 42(1) (2007) 37–45.
[3] S. W. Golomb, Polyominoes, Charles Scribner’s Sons, 1965.
[4] S. W. Golomb, Checker boards and polyominoes, Amer. Math. Monthly 61 (1954) 675–682.
[5] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17–20.
[6] R. Todeschini, V. Consodni, Handbook of Molecular Descriptors, Willey-VCH, Weinheim, 2000.
[7] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes New York 27 (1994)9–15.
[8] P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin, I. Gutman, G. J. Domotor, The Szeged index and an analogy with the Wiener index, J. Chem. Inform. Comput. Sci. 35 (1995) 547–550.
[9] P. V. Khadikar, P. P. Kale, N. V. Deshpande, S. Karmarkar, V.K. Agrawal, Novel PI indices of hexagonal chains, J. Math. Chem. 29 (2001)143–150.
[10] P. V. Khadikar, S. Karmarkar, V. K. Agrawal, A novel PI index and its applications to QSRP/QSAR studies, J. Chem. Inf. Comput. Sci. 41 (4)(2001) 934–949.
[11] P. V. Khadikar, P. P. Kale, N. V. Deshpande, S. Karmarkar, V.K. Agrawal, Novel PI indices of hexagonal chains, J. Math. Chem. 29 (2001)143–150.
[12] P. V. Khadikar, A. Phadnis, A. Shrivastava, QSAR study on toxicity to aqueous organism using PI index, Bioorg. Med. Chem. 10 (2002)1181–1188.
[13] H. Deng, Extremal catacondensed hexagonal systems with respect to the PI index, MATCH Commun. Math. Comput. Chem. 55 (2) (2006)453–460.
[14] H. Deng, S. Chen, The PI index of pericondensed benzenoid graphs, J. Math. Chem. (2006), doi:10.1007/s10910-006-9175-9.
[15] H. Deng, The PI index of TUVC6[2p, q], MATCH Commun. Math. Comput. Chem. 55 (2) (2006) 461–476.
[16] H. Deng, S. Chen, J. Zhang, The PI index of Phenylenes, J. Math. Chem. 41 (1) (2007) 63–69.
[17] L. Alonso, R. Cerf, The three dimensional polyominoes of minimal area, Electron. J. Combin. 3 (1996) 39p.
[18] I. Gutman, N. Trinajstic, Graph theory and molecular orbitals, total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
[19] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92.
[20] S. Nikolic, G. Kovačevic, A. Miličevic, N. Trinajstic, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124.
[21] B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394 (2004) 93–95.
[22] B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113–118.
[23] B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 233–239.
[24] D.A. Klarner, Polyominoes, in: J.E. Goodman, J. O’Rourke (Eds.), Handbook of Discrete and Computational Geometry, CRC Press LLC, 1997, pp. 225–242 (Chapter 12).
[25] Y. Zeng, F. Zhang, Extremal polyomino chains on k-matchings and k-independent sets, J. Math. Chem. 42 (2) (2007) 125–140.
[26] L. Xu, S. Chen, The PI index of polyomino chains, Appl. Math. Lett. 21 (2008) 1101–1104.
[27] J. Yang, F. Xia, S. Chen, On the Randic index of of polyomino chains, Appl. Math. Sci. 5 (5) (2011) 255–260.
[28] J. Yang, F. Xia, S. Chen, On sum-connectivity index of polyomino chains, Appl. Math. Sci. 5 (6) (2011) 267–271.
Cite This Article
  • APA Style

    P. Gayathri, K. R. Subramanian. (2016). The PI(Padmakar-Ivan) Index of Polyominoes. International Journal of Discrete Mathematics, 1(1), 1-4. https://doi.org/10.11648/j.dmath.20160101.11

    Copy | Download

    ACS Style

    P. Gayathri; K. R. Subramanian. The PI(Padmakar-Ivan) Index of Polyominoes. Int. J. Discrete Math. 2016, 1(1), 1-4. doi: 10.11648/j.dmath.20160101.11

    Copy | Download

    AMA Style

    P. Gayathri, K. R. Subramanian. The PI(Padmakar-Ivan) Index of Polyominoes. Int J Discrete Math. 2016;1(1):1-4. doi: 10.11648/j.dmath.20160101.11

    Copy | Download

  • @article{10.11648/j.dmath.20160101.11,
      author = {P. Gayathri and K. R. Subramanian},
      title = {The PI(Padmakar-Ivan) Index of Polyominoes},
      journal = {International Journal of Discrete Mathematics},
      volume = {1},
      number = {1},
      pages = {1-4},
      doi = {10.11648/j.dmath.20160101.11},
      url = {https://doi.org/10.11648/j.dmath.20160101.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.dmath.20160101.11},
      abstract = {The Padmakar – Ivan (PI) index of polyominoes is examined.Efficient calculations of formulas for PI index for the polyominoes are put forward. In chemical graph theory, the PI index is a topological indexof a graph G is defined as , where for edge e = xy, n1 (e) is the number of edges of G lying closer to x than y, n2 (e) is the number of edges of G lying closer to y than x and summation goes over all edges of G. The edges equidistant from x and y are not considered for the calculation of PI index. In this paper, we calculated the PI index of polyominoes like square Polyomino, L-Polyomino,T-Polyomino, Straight-Polyomino and Skew-Polyomino.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The PI(Padmakar-Ivan) Index of Polyominoes
    AU  - P. Gayathri
    AU  - K. R. Subramanian
    Y1  - 2016/12/26
    PY  - 2016
    N1  - https://doi.org/10.11648/j.dmath.20160101.11
    DO  - 10.11648/j.dmath.20160101.11
    T2  - International Journal of Discrete Mathematics
    JF  - International Journal of Discrete Mathematics
    JO  - International Journal of Discrete Mathematics
    SP  - 1
    EP  - 4
    PB  - Science Publishing Group
    SN  - 2578-9252
    UR  - https://doi.org/10.11648/j.dmath.20160101.11
    AB  - The Padmakar – Ivan (PI) index of polyominoes is examined.Efficient calculations of formulas for PI index for the polyominoes are put forward. In chemical graph theory, the PI index is a topological indexof a graph G is defined as , where for edge e = xy, n1 (e) is the number of edges of G lying closer to x than y, n2 (e) is the number of edges of G lying closer to y than x and summation goes over all edges of G. The edges equidistant from x and y are not considered for the calculation of PI index. In this paper, we calculated the PI index of polyominoes like square Polyomino, L-Polyomino,T-Polyomino, Straight-Polyomino and Skew-Polyomino.
    VL  - 1
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Mathematics, A. V. College (Autonomous), Mayiladuthurai, Tamilnadu, India

  • Department of Computer Applications, Shrimati Indira Gandhi College, Trichy, Tamilnadu, India

  • Sections