The Padmakar – Ivan (PI) index of polyominoes is examined.Efficient calculations of formulas for PI index for the polyominoes are put forward. In chemical graph theory, the PI index is a topological indexof a graph G is defined as , where for edge e = xy, n1 (e) is the number of edges of G lying closer to x than y, n2 (e) is the number of edges of G lying closer to y than x and summation goes over all edges of G. The edges equidistant from x and y are not considered for the calculation of PI index. In this paper, we calculated the PI index of polyominoes like square Polyomino, L-Polyomino,T-Polyomino, Straight-Polyomino and Skew-Polyomino.
Published in | International Journal of Discrete Mathematics (Volume 1, Issue 1) |
DOI | 10.11648/j.dmath.20160101.11 |
Page(s) | 1-4 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2016. Published by Science Publishing Group |
Molecular Graph, Polyominoes, Topological Indices, PI (Padmakar-Ivan)Index
[1] | D. A. Klarner, Polyominoes, in: J.E. Goodman, J. O’Rourke (Eds.), Handbook of Discrete and Computational Geometry, CRC Press LLC, 1997, pp. 225–242 (Chapter 12). |
[2] | P.E. John, P.V. Khadikar, J. Singh, A method of computing the PI index of benzenoid hydrocarbons using orthogonal cuts, J. Math. Chem. 42(1) (2007) 37–45. |
[3] | S. W. Golomb, Polyominoes, Charles Scribner’s Sons, 1965. |
[4] | S. W. Golomb, Checker boards and polyominoes, Amer. Math. Monthly 61 (1954) 675–682. |
[5] | H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17–20. |
[6] | R. Todeschini, V. Consodni, Handbook of Molecular Descriptors, Willey-VCH, Weinheim, 2000. |
[7] | I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes New York 27 (1994)9–15. |
[8] | P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrynin, I. Gutman, G. J. Domotor, The Szeged index and an analogy with the Wiener index, J. Chem. Inform. Comput. Sci. 35 (1995) 547–550. |
[9] | P. V. Khadikar, P. P. Kale, N. V. Deshpande, S. Karmarkar, V.K. Agrawal, Novel PI indices of hexagonal chains, J. Math. Chem. 29 (2001)143–150. |
[10] | P. V. Khadikar, S. Karmarkar, V. K. Agrawal, A novel PI index and its applications to QSRP/QSAR studies, J. Chem. Inf. Comput. Sci. 41 (4)(2001) 934–949. |
[11] | P. V. Khadikar, P. P. Kale, N. V. Deshpande, S. Karmarkar, V.K. Agrawal, Novel PI indices of hexagonal chains, J. Math. Chem. 29 (2001)143–150. |
[12] | P. V. Khadikar, A. Phadnis, A. Shrivastava, QSAR study on toxicity to aqueous organism using PI index, Bioorg. Med. Chem. 10 (2002)1181–1188. |
[13] | H. Deng, Extremal catacondensed hexagonal systems with respect to the PI index, MATCH Commun. Math. Comput. Chem. 55 (2) (2006)453–460. |
[14] | H. Deng, S. Chen, The PI index of pericondensed benzenoid graphs, J. Math. Chem. (2006), doi:10.1007/s10910-006-9175-9. |
[15] | H. Deng, The PI index of TUVC6[2p, q], MATCH Commun. Math. Comput. Chem. 55 (2) (2006) 461–476. |
[16] | H. Deng, S. Chen, J. Zhang, The PI index of Phenylenes, J. Math. Chem. 41 (1) (2007) 63–69. |
[17] | L. Alonso, R. Cerf, The three dimensional polyominoes of minimal area, Electron. J. Combin. 3 (1996) 39p. |
[18] | I. Gutman, N. Trinajstic, Graph theory and molecular orbitals, total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538. |
[19] | I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83–92. |
[20] | S. Nikolic, G. Kovačevic, A. Miličevic, N. Trinajstic, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113–124. |
[21] | B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394 (2004) 93–95. |
[22] | B. Zhou, Zagreb indices, MATCH Commun. Math. Comput. Chem. 52 (2004) 113–118. |
[23] | B. Zhou, I. Gutman, Further properties of Zagreb indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 233–239. |
[24] | D.A. Klarner, Polyominoes, in: J.E. Goodman, J. O’Rourke (Eds.), Handbook of Discrete and Computational Geometry, CRC Press LLC, 1997, pp. 225–242 (Chapter 12). |
[25] | Y. Zeng, F. Zhang, Extremal polyomino chains on k-matchings and k-independent sets, J. Math. Chem. 42 (2) (2007) 125–140. |
[26] | L. Xu, S. Chen, The PI index of polyomino chains, Appl. Math. Lett. 21 (2008) 1101–1104. |
[27] | J. Yang, F. Xia, S. Chen, On the Randic index of of polyomino chains, Appl. Math. Sci. 5 (5) (2011) 255–260. |
[28] | J. Yang, F. Xia, S. Chen, On sum-connectivity index of polyomino chains, Appl. Math. Sci. 5 (6) (2011) 267–271. |
APA Style
P. Gayathri, K. R. Subramanian. (2016). The PI(Padmakar-Ivan) Index of Polyominoes. International Journal of Discrete Mathematics, 1(1), 1-4. https://doi.org/10.11648/j.dmath.20160101.11
ACS Style
P. Gayathri; K. R. Subramanian. The PI(Padmakar-Ivan) Index of Polyominoes. Int. J. Discrete Math. 2016, 1(1), 1-4. doi: 10.11648/j.dmath.20160101.11
@article{10.11648/j.dmath.20160101.11, author = {P. Gayathri and K. R. Subramanian}, title = {The PI(Padmakar-Ivan) Index of Polyominoes}, journal = {International Journal of Discrete Mathematics}, volume = {1}, number = {1}, pages = {1-4}, doi = {10.11648/j.dmath.20160101.11}, url = {https://doi.org/10.11648/j.dmath.20160101.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.dmath.20160101.11}, abstract = {The Padmakar – Ivan (PI) index of polyominoes is examined.Efficient calculations of formulas for PI index for the polyominoes are put forward. In chemical graph theory, the PI index is a topological indexof a graph G is defined as , where for edge e = xy, n1 (e) is the number of edges of G lying closer to x than y, n2 (e) is the number of edges of G lying closer to y than x and summation goes over all edges of G. The edges equidistant from x and y are not considered for the calculation of PI index. In this paper, we calculated the PI index of polyominoes like square Polyomino, L-Polyomino,T-Polyomino, Straight-Polyomino and Skew-Polyomino.}, year = {2016} }
TY - JOUR T1 - The PI(Padmakar-Ivan) Index of Polyominoes AU - P. Gayathri AU - K. R. Subramanian Y1 - 2016/12/26 PY - 2016 N1 - https://doi.org/10.11648/j.dmath.20160101.11 DO - 10.11648/j.dmath.20160101.11 T2 - International Journal of Discrete Mathematics JF - International Journal of Discrete Mathematics JO - International Journal of Discrete Mathematics SP - 1 EP - 4 PB - Science Publishing Group SN - 2578-9252 UR - https://doi.org/10.11648/j.dmath.20160101.11 AB - The Padmakar – Ivan (PI) index of polyominoes is examined.Efficient calculations of formulas for PI index for the polyominoes are put forward. In chemical graph theory, the PI index is a topological indexof a graph G is defined as , where for edge e = xy, n1 (e) is the number of edges of G lying closer to x than y, n2 (e) is the number of edges of G lying closer to y than x and summation goes over all edges of G. The edges equidistant from x and y are not considered for the calculation of PI index. In this paper, we calculated the PI index of polyominoes like square Polyomino, L-Polyomino,T-Polyomino, Straight-Polyomino and Skew-Polyomino. VL - 1 IS - 1 ER -