This paper presents the derivation of Lorentz transformations in curvilinear coordinates utilizing generalized biquaternions. Generalized biquaternions are rotations in curvilinear coordinates, including on the tx, ty, and tz planes. These space-time rotations are precisely the Lorentz transformations in curvilinear coordinates. The orbital rotation of the source and/or receiver, which mathematically represents the Lorentz transformation in spherical coordinates, is identified as the cause of the transverse Doppler effect. The change in wave frequency, specifically the "redshift," results in nonlinearities of Hubble's law manifesting as phenomena such as accelerated and anisotropic expansion of the universe, aberration, and wave polarization. Apparently, redshift exists even without radial expansion of the universe, i.e., without the "Big Bang". The reasons for the accelerated expansion of the universe, the anisotropic (angular) distribution of relic radiation, and the polarization of light from distant stars become clear in this approach. This greatly simplifies the mathematical description and understanding of the supposedly complex processes occurring in the universe.
Published in | American Journal of Astronomy and Astrophysics (Volume 12, Issue 1) |
DOI | 10.11648/j.ajaa.20251201.12 |
Page(s) | 9-20 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Biquaternion, Lorentz Transformation, Redshift, Hubble's Law, Universe Expansion, Aberration, Starlight Polarization
Experimental data for Hubble's law | |||||
---|---|---|---|---|---|
from [20] | from [21] | from + [20] [21] | |||
r | v | r | v | r | v |
0 | -25 | 015.0 | 1380 | 000 | -25 |
0.032 | 170 | 031.3 | 2304 | 000.032 | 170 |
0.034 | 290 | 038.7 | 3294 | 000.034 | 290 |
0.214 | -130 | 039.5 | 3149 | 000.214 | -130 |
0.263 | -70 | 043.2 | 3272 | 000.263 | -70 |
0.275 | -202.5 | 045.1 | 3106 | 000.275 | -202.5 |
0.45 | 200 | 050.9 | 4398 | 000.45 | 200 |
0.5 | 280 | 053.3 | 3545 | 000.5 | 280 |
0.62 | 300 | 056.0 | 4124 | 000.62 | 300 |
0.63 | 200 | 057.3 | 4869 | 000.63 | 200 |
0.67 | 400 | 058.0 | 4227 | 000.67 | 400 |
0.79 | 290 | 058.3 | 4061 | 000.79 | 290 |
0.8 | 300 | 062.2 | 4749 | 000.8 | 300 |
0.9 | 215.1665 | 066.6 | 4924 | 000.9 | 215.1665 |
1. | 760. | 066.7 | 4730 | 001 | 760 |
1.1 | 537.5 | 066.8 | 4847 | 001.1 | 537.5 |
1.16 | 800 | 068.2 | 4820 | 001.16 | 800 |
1.2 | 580 | 071.8 | 5424 | 001.2 | 580 |
1.24 | 600 | 074.3 | 4982 | 001.24 | 600 |
1.27 | 730 | 077.9 | 5434 | 001.27 | 730 |
1.4 | 500 | 082.4 | 6673 | 001.4 | 500 |
1.42 | 700 | 085.6 | 7143 | 001.42 | 700 |
1.49 | 810 | 088.4 | 7016 | 001.49 | 810 |
1.52 | 650 | 088.6 | 5935 | 001.52 | 650 |
1.53 | 800 | 089.2 | 6709 | 001.53 | 800 |
1.7 | 960 | 096.7 | 7241 | 001.7 | 960 |
1.73 | 650 | 102.1 | 7765 | 001.73 | 650 |
1.74 | 940 | 114.9 | 8930 | 001.74 | 940 |
1.79 | 800 | 117.1 | 9801 | 001.79 | 800 |
2 | 810 | 119.7 | 8604 | 002 | 810 |
2.06 | 900 | 121.5 | 7880 | 002.06 | 900 |
2.23 | 1140 | 127.8 | 8691 | 002.23 | 1140 |
2.35 | 1100 | 132.7 | 10446 | 002.35 | 1100 |
2.37 | 1300 | 134.7 | 9065 | 002.37 | 1300 |
3.45 | 1800 | 136.0 | 9024 | 003.45 | 1800 |
149.9 | 10715 | 015.0 | 1380 | ||
151.4 | 10696 | 031.3 | 2304 | ||
158.9 | 12012 | 038.7 | 3294 | ||
176.8 | 12871 | 039.5 | 3149 | ||
183.9 | 13707 | 043.2 | 3272 | ||
185.6 | 14634 | 045.1 | 3106 | ||
19.80 | 1088 | 050.9 | 4398 | ||
198.6 | 15055 | 053.3 | 3545 | ||
20.70 | 1607 | 056.0 | 4124 | ||
202.3 | 14764 | 057.3 | 4869 | ||
202.5 | 13518 | 058.0 | 4227 | ||
215.4 | 15002 | 058.3 | 4061 | ||
235.9 | 17371 | 062.2 | 4749 | ||
236.1 | 15567 | 066.6 | 4924 | ||
238.9 | 16687 | 066.7 | 4730 | ||
262.2 | 18212 | 066.8 | 4847 | ||
274.6 | 22426 | 068.2 | 4820 | ||
280.1 | 18997 | 071.8 | 5424 | ||
303.4 | 21190 | 074.3 | 4982 | ||
309.5 | 23646 | 077.9 | 5434 | ||
391.5 | 26318 | 082.4 | 6673 | ||
467.0 | 30253 | 085.6 | 7143 | ||
088.4 | 7016 | ||||
088.6 | 5935 | ||||
089.2 | 6709 | ||||
096.7 | 7241 | ||||
102.1 | 7765 | ||||
114.9 | 8930 | ||||
117.1 | 9801 | ||||
119.7 | 8604 | ||||
121.5 | 7880 | ||||
127.8 | 8691 | ||||
132.7 | 10446 | ||||
134.7 | 9065 | ||||
136.0 | 9024 | ||||
149.9 | 10715 | ||||
151.4 | 10696 | ||||
158.9 | 12012 | ||||
176.8 | 12871 | ||||
183.9 | 13707 | ||||
185.6 | 14634 | ||||
19.80 | 1088 | ||||
198.6 | 15055 | ||||
20.70 | 1607 | ||||
202.3 | 14764 | ||||
202.5 | 13518 | ||||
215.4 | 15002 | ||||
235.9 | 17371 | ||||
236.1 | 15567 | ||||
238.9 | 16687 | ||||
262.2 | 18212 | ||||
274.6 | 22426 | ||||
280.1 | 18997 | ||||
303.4 | 21190 | ||||
309.5 | 23646 | ||||
391.5 | 26318 | ||||
467.0 | 30253 |
CMB | Cosmic Microwave Background |
pc | Parsec |
Mpc | Mega Parsec |
[1] | Daniel Nieto Yll. Doppler shift compensation strategies for LEO satellite communication systems. Polytechnic University of Catalonia. Published 1 June 2018. |
[2] | The global positioning system, relativity, and extraterrestrial navigation Neil Ashby and Robert A. Nelson 2008. |
[3] | Wikipedia. Lorentz transformations. |
[4] |
Pain, Reynald; Astier, Pierre (2012). "Observational evidence of the accelerated expansion of the Universe". Comptes Rendus Physique. 13 (7): 521–538. pp. 13-16
https://doi.org/10.1016/j.crhy.2012.04.009 (In French). |
[5] | Jacques Colin, Roya Mohayaee, Mohamed Rameez and Subir Sarkar (Nov 2019). "Evidence for anisotropy of cosmic acceleration⋆". Astronomy & Astrophysics. 631: L13. |
[6] | Freedman, W. L.; Madore, B. F. (2010). The Hubble Constant. Annual Review of Astronomy and Astrophysics. 48: 673–710. |
[7] | Sangwine, Stephen J.; Ell, Todd A.; Le Bihan, Nicolas (2010), "Fundamental representations and algebraic properties of biquaternions or complexified quaternions", Advances in Applied Clifford Algebras, 21 (3): 1–30, |
[8] | The rules of 4-dimensional perspective: How to implement Lorentz transformations in relativistic visualization. Andrew J. S. Hamilton. [gr-qc] 16 Nov 2021. |
[9] | Babaev A. Kh., Biquaternions, rotations, and spinors in the generalized Clifford algebra (in Russian). Sci-article.ru. № 45 (May) 2017. pp. 296 - 304, |
[10] | Chris J. L. Doran. Geometric Algebra and its Application to Mathematical Physics. Sidney Sussex College. A dissertation submitted for the degree of Doctor of Philosophy in the University of Cambridge. February 1994, pages 4-6. |
[11] | Gaston Casanova. L’Algebre Vectorielle. Press Universitaires de France. p. 10, 19. |
[12] | Babaev A. Kh. Alternative formalism based on Clifford algebra (in Russian), SCI-ARTICLE.RU. №40 (December) 2016, pp. 34-42, |
[13] | Landau L. D., Lifshitz E. M., The Classical Theory of Fields, Course of Theoretical Physics, vol. 2, pp. 123-127. |
[14] | Albert Einstein (1905) "Zur Elektrodynamik bewegter Körper", Annalen der Physik 17: 891; English translation. |
[15] | Wikipedia. |
[16] | Wikipedia. |
[17] | Dan Scolnic, Lucas M. Macri, Wenlong Yuan, Stefano Casertano, Adam G. Riess. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics Beyond Lambda CDM -2019-03-18. |
[18] | Gott III, J. Richard; Mario Jurić; David Schlegel; Fiona Hoyle; et al. (2005). "A Map of the Universe" (PDF). The Astrophysical Journal. 624 (2): 463–484. |
[19] | Florian Peißker, Andreas Eckart, Michal Zajaček, Basel Ali, Marzieh Parsa. S62 and S4711: Indications of a population of faint fast moving stars inside the S2 orbit -- S4711 on a 7.6 year orbit around Sgr~A* // The Astrophysical Journal. — 2020-08-11. |
[20] | Hubble E. (1929). "A relation between distance and radial velocity among extra-galactic nebulae". Proceedings of the National Academy of Sciences 15 (3): 168–173. |
[21] | W. L. Freedman, B. F. Madore, B. K. Gibson, L. Ferrarese, D. D. Kelson, S. Sakai, J. R. Mould, R. C. Kennicutt Jr., H. C. Ford, J. A. Graham and others, Hubble, E. (1929). "A relation between distance and radial velocity among extra-galactic nebulae". Proceedings of the National Academy of Sciences. 15 (3): 168–173. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant, |
[22] | Wikipedia. |
[23] |
First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, C.L. Bennett, et al., 2003ApJS..148....1B, reprint / preprint (4.4 Mb) / individual figures / ADS / astro-ph,
https://lambda.gsfc.nasa.gov/product/wmap/pub_papers/firstyear/basic/wmap_cb1_images.html |
[24] | Wikipedia. |
[25] | Fosalba, Pablo; Lazarian, Alex; Prunet, Simon; Tauber, Jan A. (2002). "Statistical Properties of Galactic Starlight Polarization". Astrophysical Journal. 564 (2): 762–772. |
APA Style
Babaev, A. K. (2025). Description of Lorentz Transformations, the Doppler Effect, Hubble's Law, and Related Phenomena in Curvilinear Coordinates by Generalized Biquaternions. American Journal of Astronomy and Astrophysics, 12(1), 9-20. https://doi.org/10.11648/j.ajaa.20251201.12
ACS Style
Babaev, A. K. Description of Lorentz Transformations, the Doppler Effect, Hubble's Law, and Related Phenomena in Curvilinear Coordinates by Generalized Biquaternions. Am. J. Astron. Astrophys. 2025, 12(1), 9-20. doi: 10.11648/j.ajaa.20251201.12
AMA Style
Babaev AK. Description of Lorentz Transformations, the Doppler Effect, Hubble's Law, and Related Phenomena in Curvilinear Coordinates by Generalized Biquaternions. Am J Astron Astrophys. 2025;12(1):9-20. doi: 10.11648/j.ajaa.20251201.12
@article{10.11648/j.ajaa.20251201.12, author = {Alimzhan Kholmuratovich Babaev}, title = {Description of Lorentz Transformations, the Doppler Effect, Hubble's Law, and Related Phenomena in Curvilinear Coordinates by Generalized Biquaternions}, journal = {American Journal of Astronomy and Astrophysics}, volume = {12}, number = {1}, pages = {9-20}, doi = {10.11648/j.ajaa.20251201.12}, url = {https://doi.org/10.11648/j.ajaa.20251201.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajaa.20251201.12}, abstract = {This paper presents the derivation of Lorentz transformations in curvilinear coordinates utilizing generalized biquaternions. Generalized biquaternions are rotations in curvilinear coordinates, including on the tx, ty, and tz planes. These space-time rotations are precisely the Lorentz transformations in curvilinear coordinates. The orbital rotation of the source and/or receiver, which mathematically represents the Lorentz transformation in spherical coordinates, is identified as the cause of the transverse Doppler effect. The change in wave frequency, specifically the "redshift," results in nonlinearities of Hubble's law manifesting as phenomena such as accelerated and anisotropic expansion of the universe, aberration, and wave polarization. Apparently, redshift exists even without radial expansion of the universe, i.e., without the "Big Bang". The reasons for the accelerated expansion of the universe, the anisotropic (angular) distribution of relic radiation, and the polarization of light from distant stars become clear in this approach. This greatly simplifies the mathematical description and understanding of the supposedly complex processes occurring in the universe.}, year = {2025} }
TY - JOUR T1 - Description of Lorentz Transformations, the Doppler Effect, Hubble's Law, and Related Phenomena in Curvilinear Coordinates by Generalized Biquaternions AU - Alimzhan Kholmuratovich Babaev Y1 - 2025/01/22 PY - 2025 N1 - https://doi.org/10.11648/j.ajaa.20251201.12 DO - 10.11648/j.ajaa.20251201.12 T2 - American Journal of Astronomy and Astrophysics JF - American Journal of Astronomy and Astrophysics JO - American Journal of Astronomy and Astrophysics SP - 9 EP - 20 PB - Science Publishing Group SN - 2376-4686 UR - https://doi.org/10.11648/j.ajaa.20251201.12 AB - This paper presents the derivation of Lorentz transformations in curvilinear coordinates utilizing generalized biquaternions. Generalized biquaternions are rotations in curvilinear coordinates, including on the tx, ty, and tz planes. These space-time rotations are precisely the Lorentz transformations in curvilinear coordinates. The orbital rotation of the source and/or receiver, which mathematically represents the Lorentz transformation in spherical coordinates, is identified as the cause of the transverse Doppler effect. The change in wave frequency, specifically the "redshift," results in nonlinearities of Hubble's law manifesting as phenomena such as accelerated and anisotropic expansion of the universe, aberration, and wave polarization. Apparently, redshift exists even without radial expansion of the universe, i.e., without the "Big Bang". The reasons for the accelerated expansion of the universe, the anisotropic (angular) distribution of relic radiation, and the polarization of light from distant stars become clear in this approach. This greatly simplifies the mathematical description and understanding of the supposedly complex processes occurring in the universe. VL - 12 IS - 1 ER -