Recently, Kim-Kim (2016-2017) studied simmetric identities of higher-order degenerate Bernoulli and Euler polynomials which were defined by Carlitz (1979). In this paper, we define the higher-order deformed degenerate Bernoulli and Euler polynomials which are modified the higher-order degenerate Bernoulli and Euler polynomials. We also investigate some interesting identities for the the higher-order deformed degenerate Bernoulli and Euler polynomials.
| Published in | Applied and Computational Mathematics (Volume 6, Issue 6) | 
| DOI | 10.11648/j.acm.20170606.13 | 
| Page(s) | 254-258 | 
| Creative Commons | 
 This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. | 
| Copyright | Copyright © The Author(s), 2017. Published by Science Publishing Group | 
Bernoulli Polynomials, Euler Polynomials, Degenerate Bernoulli Polynomials
| [1] | L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., 15(1979), no.2, 51-88. | 
| [2] | L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math. (Basel), 7 (1956), 28-33. | 
| [3] | T. Kim, D. S. Kim, Degenerate Laplace transform and degenerate gamma function, Russ. J. Math. Phys., 24(2) (2017), 241-248. | 
| [4] | D. S. Kim, T. Kim, On degenerate Bell numbers and polynomials, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, 111(2) (2017), 435-446. | 
| [5] | D. S. Kim, T. Kim, Some identities of degenerate Daehee numbers arising from certain differential equations, J. Nonlinear Sci. Appl., 10(2) (2017), 744-751. | 
| [6] | T. Kim, V. D. Dolgy, H. I. Kwon, Expansions of degenerate q -Euler numbers and polynomials, Proc. Jangjeon Math. Soc., 19(4) (2016), 625-630. | 
| [7] | V. D. Dolgy, T. Kim, H. I. Kwon, J. J. Seo, Some identities for degenerate Euler numbers and polynomials arising from degenerate Bell polynomials, Proc. Jangjeon Math. Soc., 19(3) (2016), 457-464. | 
| [8] | T. Kim, D. S. Kim, Identities of symmetry for the generalized degenerate Euler polynomials, Proc. Math. Stat., 171 (2016), 35-43. | 
| [9] | T. Kim, D. V. Dolgy, L. C. Jang, H. I. Kwon, Some identities of degenerate q –Euler polynomials under the symmetry group of degree n, J. Nonlinear Sci. Appl., 9(6) (2016), 4707-4712. | 
| [10] | T. Kim, D. S. Kim, H. I. Kwon, J. J. Seo, Some identities for degenerate Frobenius-Euler numbers arising from nonlinear differential equations, Ital. J. Pure Appl. Math., 36 (2016), 843-850. | 
| [11] | T. Kim, On degenerate q -Bernoulli polynomials, Bull. Korean Math. Soc., 53(4) (2016), 1149-1156. | 
| [12] | T. Kim, D. S. Kim, J. J. Seo, Fully degenerate poly-Bernoulli numbers and polynomials, Open Math., 14 (2016), 545-556. | 
| [13] | D. V. Dolgy, T. Kim, J. J. Seo, On the symmetric identities of modified degenerate Bernoulli polynomials, Proc. Jangjeon Math. Soc., 19(2) (2016), 301-308. | 
| [14] | H. I. Kwon, T. Kim, J. J. Seo, Some new identities of symmetry for modified degenerate Euler polynomials, Proc. Jangjeon Math. Soc., 19(2) (2016), 237-242. | 
| [15] | T. Kim, D. S. Kim, H. I. Kwon, Some identities relating to degenerate Bernoulli polynomials, Filomat, 30(4) (2016), 905-912. | 
| [16] | T. Kim, D. S. Kim, H. I. Kwon, J. J. Seo, Differential equations arising from the generating function of general modified degenerate Euler numbers, Adv. Difference Equ., 2016:129 (2016), 7 pp. | 
| [17] | D. S. Kim, T. Kim, D. V. Dolgy, On Carlitz’s degenerate Euler numbers and polynomials, J. Comput. Anal. Appl., 21(4) (2016), 738-742. | 
| [18] | T. Kim, H. I. Kwon, J. J. Seo, Degenerate q -Changhee polynomials, J. Nonlinear Sci. Appl., 9(5) (2016), 2389-2393. | 
| [19] | T. Kim, D. S. Kim, Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations, J. Nonlinear Sci. Appl., 9(5) (2016), 2086-2098. | 
| [20] | D. V. Dolgy, D. S. Kim, T. Kim, T. Mansour, Degenerate poly-Bernoulli polynomials of the second kind, J. Comput. Anal. Appl., 21(5) (2016), 954-966. | 
| [21] | D. S. Kim, T. Kim, T. Mansour, J. J. Seo, Degenerate Mittag-Leffler polynomials, Appl. Math. Comput., 274 (2016), 258-266. | 
| [22] | T. Kim, D. V. Dolgy, D. S. Kim, Symmetric identities for degenerate generalized Bernoulli polynomials, J. Nonlinear Sci. Appl., 9(2) (2016), 677-683. | 
| [23] | D. S. Kim, T. Kim, Symmetric identities of higher-order degenerate q -Euler polynomials, J. Nonlinear Sci. Appl., 9(2) (2016), 443-451. | 
| [24] | T. Kim, Symmetric identities of degenerate Bernoulli polynomials, Proc. Jangjeon Math. Soc., 18(4) (2015), 593-599. | 
| [25] | T. Kim, J. J. Seo, On the generalized degenerate Euler numbers and polynomials, Proc. Jangjeon Math. Soc., 18(4) (2015), 537-546. | 
| [26] | T. Kim, H. I. Kwon, J. J. Seo, Identities of symmetry for degenerate q –Bernoulli polynomials, Proc. Jangjeon Math. Soc., 18(4) (2015), 495-499. | 
| [27] | T. Kim, J. J. Seo, A note on partially degenerate Bernoulli numbers and polynomials, J. Math. Anal., 5(5) (2015), 1-6. | 
| [28] | T. Kim, Degenerate Euler zeta function, Russ. J. Math. Phys., 22(4) (2015), 469-472. | 
| [29] | D. S. Kim, T. Kim, D. V. Dolgy, Degenerate poly-Cauchy polynomials with a q parameter, J. Inequal. Appl., 2015:364 (2015), 15pp. | 
| [30] | T. Kim, On the degenerate Cauchy numbers and polynomials, Proc. Jangjeon Math. Soc., 18(3) (2015), 307-312. | 
| [31] | H. I. Kwon, T. Kim, J. J. Seo, A note on degenerate Changhee numbers and polynomials, Proc. Jangjeon Math. Soc., 18(3) (2015),295-305. | 
| [32] | D. V. Dolgy, D. S. Kim, T. Kim, T. Mansour, Degenerate poly-Cauchy polynomials, Appl. Math. Comput., 269 (2015),637-646. | 
| [33] | D. S. Kim, T. Kim, A note on degenerate poly-Bernoulli numbers and polynomials, Adv. Difference Equ., 2015:258 (2015),8pp. | 
| [34] | T. Kim, D. S. Kim, D. V. Dolgy, Degenerate q -Euler polynomials, Adv. Difference Equ., 2015:246 (2015),11pp. | 
| [35] | D. S. Kim, T. Kim, H. I. Kwon, T. Mansour, Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint, J. Inequal. Appl., 2015:228 (2015),13pp. | 
| [36] | D. S. Kim, T. Kim, D. V. Dolgy, On q-analogs of degenerate Bernoulli polynomials, Adv. Difference Equ., 2015:194 (2015), 10pp. | 
| [37] | D. S. Kim, T. Kim, Some identities of degenerate special polynomials, Open Math., 13 (2015). | 
| [38] | D. V. Dolgy, D. S. Kim, T. Kim, T. Mansour, Barnes-type degenerate Euler polynomials, Appl. Math. Comput., 261 (2015), 388-396. | 
| [39] | D. V. Dolgy, D. S. Kim, T. Kim, T. Mansour, Barnes-type Daehee with -parameter and degenerate Euler mixed-type polynomials, J. Inequal. Appl., 2015:154 (2015),13pp. | 
APA Style
Lee Chae Jang. (2017). Some Identities Related with the Higher-order Deformed Degenerate Bernoulli and Euler Polynomials. Applied and Computational Mathematics, 6(6), 254-258. https://doi.org/10.11648/j.acm.20170606.13
ACS Style
Lee Chae Jang. Some Identities Related with the Higher-order Deformed Degenerate Bernoulli and Euler Polynomials. Appl. Comput. Math. 2017, 6(6), 254-258. doi: 10.11648/j.acm.20170606.13
AMA Style
Lee Chae Jang. Some Identities Related with the Higher-order Deformed Degenerate Bernoulli and Euler Polynomials. Appl Comput Math. 2017;6(6):254-258. doi: 10.11648/j.acm.20170606.13
@article{10.11648/j.acm.20170606.13,
  author = {Lee Chae Jang},
  title = {Some Identities Related with the Higher-order Deformed Degenerate Bernoulli and Euler Polynomials},
  journal = {Applied and Computational Mathematics},
  volume = {6},
  number = {6},
  pages = {254-258},
  doi = {10.11648/j.acm.20170606.13},
  url = {https://doi.org/10.11648/j.acm.20170606.13},
  eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.acm.20170606.13},
  abstract = {Recently, Kim-Kim (2016-2017) studied simmetric identities of higher-order degenerate Bernoulli and Euler polynomials which were defined by Carlitz (1979). In this paper, we define the higher-order deformed degenerate Bernoulli and Euler polynomials which are modified the higher-order degenerate Bernoulli and Euler polynomials. We also investigate some interesting identities for the the higher-order deformed degenerate Bernoulli and Euler polynomials.},
 year = {2017}
}
											
										TY - JOUR T1 - Some Identities Related with the Higher-order Deformed Degenerate Bernoulli and Euler Polynomials AU - Lee Chae Jang Y1 - 2017/12/15 PY - 2017 N1 - https://doi.org/10.11648/j.acm.20170606.13 DO - 10.11648/j.acm.20170606.13 T2 - Applied and Computational Mathematics JF - Applied and Computational Mathematics JO - Applied and Computational Mathematics SP - 254 EP - 258 PB - Science Publishing Group SN - 2328-5613 UR - https://doi.org/10.11648/j.acm.20170606.13 AB - Recently, Kim-Kim (2016-2017) studied simmetric identities of higher-order degenerate Bernoulli and Euler polynomials which were defined by Carlitz (1979). In this paper, we define the higher-order deformed degenerate Bernoulli and Euler polynomials which are modified the higher-order degenerate Bernoulli and Euler polynomials. We also investigate some interesting identities for the the higher-order deformed degenerate Bernoulli and Euler polynomials. VL - 6 IS - 6 ER -