Recently, green suppliers ‘selection problem (GSSP) is becoming a trend of any organization in order to satisfy their needs regarding environmental issues. It is one of the crucial activities in the development of the green supply chain and it attracted many researchers. As a result, many methods in the literature have dealt with this problem based on multi-criteria group decision-making ignoring the degree of consensus between the decision-makers, they take into consideration the level of priority between the decision-makers and the interdependence between the criteria. Due to the complexity of real environments and the subjective nature of human judgments, the proposal of a consensus model becomes very interesting in order to find agreements between decision makers using preference relations. We will present in this paper a study of the literature on the problems of consensus and selection of green suppliers, and then propose a model which is an extension of Hierarchical Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (H-FTOPSIS) by integrating the concept of consensus. To the best of our knowledge, this combination with a consensus process has not been previously developed, and we did not find any related literature on this specific combination. This research bridges that gap and presents a novel approach. The proposed model is applied in this study for the first time.
Published in | Advances in Applied Sciences (Volume 9, Issue 4) |
DOI | 10.11648/j.aas.20240904.12 |
Page(s) | 87-98 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2024. Published by Science Publishing Group |
Green Supplier Selection, Consensus Decision Making, Group Decision, H-FTOPSIS
Criteria | Designation | Maximize or minimize the value of the criterion (Max/Min) |
---|---|---|
Green Material | GM | Max |
Green Product | GP | Max |
Green Delivery | GD | Max |
Reliability | R | Max |
Validity | V | Max |
Reference | RE | Max |
Technical Sheet | TeS | Max |
Availibility | AV | Max |
Cost | C | Min |
Payment Method | PM | Max |
Payment Condition | PC | Max |
Certificate | Cr | Max |
Eco-Labeling | EL | Max |
Green Image | GI | Max |
Linguistic Scale | Triangular Fuzzy Number (TFN) |
---|---|
Much Less Important | (0.222, 0.25, 0.286) |
Very Less Important | (0.286, 0.333, 0.40) |
Less Important | (0.4, 0.5, 0.667) |
Moderately Important | (0.667, 1, 1.5) |
Equally Important | (1, 1, 1) |
Criteria | DM1 | DM2 | DM3 |
---|---|---|---|
Quality (Q) | 0.458 | 0.513 | 0.498 |
Technical shutter (TS) | 0.239 | 0.267 | 0.259 |
Commercial shutter (CS) | 0.181 | 0.142 | 0.138 |
EMS | 0.123 | 0.077 | 0.105 |
Sub-Criteria | DM1 | DM2 | DM3 |
---|---|---|---|
GM | 0,220 | 0,245 | 0,240 |
GP | 0,118 | 0,131 | 0,129 |
GD | 0,081 | 0,090 | 0,088 |
R | 0,062 | 0,069 | 0,067 |
V | 0,097 | 0,108 | 0,118 |
RE | 0,066 | 0,074 | 0,064 |
TeS | 0,054 | 0,060 | 0,051 |
AV | 0,090 | 0,071 | 0,070 |
C | 0,049 | 0,039 | 0,039 |
PM | 0,034 | 0,027 | 0,027 |
PC | 0,026 | 0,021 | 0,021 |
Cr | 0,054 | 0,034 | 0,047 |
EL | 0,029 | 0,019 | 0,026 |
GI | 0,020 | 0,013 | 0,014 |
Linguistic Scale | Triangular Fuzzy Number (TFN) |
---|---|
Very weak | (1,1,3) |
Weak | (1, 3, 5) |
Medium | (3, 5, 7) |
Good | (5, 7, 9) |
Very good | (7, 9, 9) |
DMs | Weight |
---|---|
President | 0.500 |
Purchasing Manager | 0.200 |
Financial Manager | 0.300 |
DM (1) | President | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Criteria | Q | TS | CS | EMS | ||||||||||
Sub-Criteria | GM | GP | GD | R | V | RE | TeS | AV | C | PM | PC | Cr | EL | GI |
Itelyum Regeneration Spa | (7,9,9) | (5,7,9) | (5,7,9) | (3,5,7) | (5,7,9) | (1,3,5) | (7,9,9) | (1,3,5) | (3,5,7) | (3,5,7) | (3,5,7) | (5,7,9) | (5,7,9) | (3,5,7) |
Galco | (5,7,9) | (5,7,9) | (7,9,9) | (1,3,5) | (5,7,9) | (5,7,9) | (5,7,9) | (5,7,9) | (5,7,9) | (5,7,9) | (1,3,5) | (7,9,9) | (5,7,9) | (5,7,9) |
Dutch2 B. V | (5,7,9) | (7,9,9) | (5,7,9) | (1,1,3) | (3,5,7) | (1,1,3) | (7,9,9) | (1,3,5) | (7,9,9) | (5,7,9) | (1,1,3) | (7,9,9) | (1,3,5) | (7,9,9) |
Wanhua | (3,5,7) | (7,9,9) | (3,5,7) | (1,3,5) | (3,5,7) | (3,5,7) | (7,9,9) | (3,5,7) | (3,5,7) | (5,7,9) | (3,5,7) | (5,7,9) | (1,3,5) | (5,7,9) |
Vercolor | (1,3,5) | (5,7,9) | (1,3,5) | (1,1,3) | (1,3,5) | (1,3,5) | (5,7,9) | (1,3,5) | (1,3,5) | (5,7,9) | (1,3,5) | (5,7,9) | (3,5,7) | (5,7,9) |
Ivonic | (3,5,7) | (5,7,9) | (3,5,7) | (1,3,5) | (3,5,7) | (3,5,7) | (5,7,9) | (3,5,7) | (3,5,7) | (3,5,7) | (7,9,9) | (3,5,7) | (1,1,3) | (3,5,7) |
Plexint | (1,1,3) | (3,5,7) | (1,1,3) | (1,1,3) | (1,1,3) | (1,1,3) | (3,5,7) | (1,1,3) | (1,1,3) | (1,1,3) | (1,1,3) | (5,7,9) | (3,5,7) | (1,1,3) |
DM (2) | Financial Manager | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Criteria | Q | TS | CS | EMS | ||||||||||
Sub-Criteria | GM | GP | GD | R | V | RE | TeS | AV | C | PM | PC | Cr | EL | GI |
Itelyum Regeneration Spa | (5,7,9) | (5,7,9) | (5,7,9) | (3,5,7) | (7,9,9) | (1,1,3) | (7,9,9) | (5,7,9) | (7,9,9) | (7,9,9) | (3,5,7) | (7,9,9) | (5,7,9) | (3,5,7) |
Galco | (7,9,9) | (7,9,9) | (5,7,9) | (3,5,7) | (5,7,9) | (5,7,9) | (7,9,9) | (7,9,9) | (5,7,9) | (7,9,9) | (5,7,9) | (7,9,9) | (5,7,9) | (5,7,9) |
Dutch2 B. V | (7,9,9) | (7,9,9) | (5,7,9) | (1,3,5) | (3,5,7) | (1,1,3) | (7,9,9) | (7,9,9) | (5,7,9) | (5,7,9) | (5,7,9) | (7,9,9) | (1,3,5) | (7,9,9) |
Wanhua | (5,7,9) | (7,9,9) | (3,5,7) | (1,3,5) | (5,7,9) | (7,9,9) | (5,7,9) | (7,9,9) | (3,5,7) | (5,7,9) | (3,5,7) | (5,7,9) | (7,9,9) | (5,7,9) |
Vercolor | (3,5,7) | (5,7,9) | (1,3,5) | (1,1,3) | (5,7,9) | (5,7,9) | (1,3,5) | (5,7,9) | (1,3,5) | (5,7,9) | (1,3,5) | (5,7,9) | (5,7,9) | (1,3,5) |
Ivonic | (1,3,5) | (5,7,9) | (3,5,7) | (1,3,5) | (3,5,7) | (3,5,7) | (3,5,7) | (5,7,9) | (3,5,7) | (3,5,7) | (3,5,7) | (3,5,7) | (3,5,7) | (3,5,7) |
Plexint | (3,5,7) | (3,5,7) | (3,5,7) | (3,5,7) | (1,1,3) | (1,3,5) | (1,1,3) | (3,5,7) | (1,1,3) | (1,1,3) | (1,1,3) | (1,1,3) | (1,3,5) | (1,1,3) |
DM (3) | Purchasing Manager | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Criteria | Q | TS | CS | EMS | ||||||||||
Sub-Criteria | GM | GP | GD | R | V | RE | TeS | AV | C | PM | PC | Cr | EL | GI |
Itelyum Regeneration Spa | (5,7,9) | (5,7,9) | (5,7,9) | (3,5,7) | (7,9,9) | (1,1,3) | (7,9,9) | (5,7,9) | (7,9,9) | (7,9,9) | (3,5,7) | (7,9,9) | (5,7,9) | (3,5,7) |
Galco | (7,9,9) | (7,9,9) | (5,7,9) | (3,5,7) | (5,7,9) | (5,7,9) | (7,9,9) | (7,9,9) | (5,7,9) | (7,9,9) | (5,7,9) | (7,9,9) | (5,7,9) | (5,7,9) |
Dutch2 B. V | (7,9,9) | (7,9,9) | (5,7,9) | (1,3,5) | (3,5,7) | (1,1,3) | (7,9,9) | (7,9,9) | (5,7,9) | (5,7,9) | (5,7,9) | (7,9,9) | (1,3,5) | (7,9,9) |
Wanhua | (5,7,9) | (7,9,9) | (3,5,7) | (1,3,5) | (5,7,9) | (7,9,9) | (5,7,9) | (7,9,9) | (3,5,7) | (5,7,9) | (3,5,7) | (5,7,9) | (7,9,9) | (5,7,9) |
Vercolor | (3,5,7) | (5,7,9) | (1,3,5) | (1,1,3) | (5,7,9) | (5,7,9) | (1,3,5) | (5,7,9) | (1,3,5) | (5,7,9) | (1,3,5) | (5,7,9) | (5,7,9) | (1,3,5) |
Ivonic | (1,3,5) | (5,7,9) | (3,5,7) | (1,3,5) | (3,5,7) | (3,5,7) | (3,5,7) | (5,7,9) | (3,5,7) | (3,5,7) | (3,5,7) | (3,5,7) | (3,5,7) | (3,5,7) |
Plexint | (3,5,7) | (3,5,7) | (3,5,7) | (3,5,7) | (1,1,3) | (1,3,5) | (1,1,3) | (3,5,7) | (1,1,3) | (1,1,3) | (1,1,3) | (1,1,3) | (1,3,5) | (1,1,3) |
Alternatives | DM (i) | Q | TS | CS | EMS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GM | GP | GD | R | V | RE | TeS | AV | C | PM | PC | Cr | EL | GI | ||
Itelyum Regeneration Spa | DM1 | 0,638 | 0,696 | 0,667 | 0,667 | 0,696 | 0,782 | 0,667 | 0,907 | 0,793 | 0,815 | 0,725 | 0,722 | 0,667 | 0,725 |
DM2 | 0,724 | 0,696 | 0,667 | 0,667 | 0,608 | 0,954 | 0,667 | 0,598 | 0,556 | 0,593 | 0,725 | 0,639 | 0,667 | 0,725 | |
DM3 | 0,638 | 0,607 | 0,667 | 0,667 | 0,696 | 0,264 | 0,667 | 0,495 | 0,651 | 0,593 | 0,55 | 0,639 | 0,667 | 0,55 | |
Galco | DM1 | 0,696 | 0,696 | 0,606 | 0,815 | 0,696 | 0,494 | 0,722 | 0,696 | 0,696 | 0,722 | 0,855 | 0,667 | 0,667 | 0,614 |
DM2 | 0,608 | 0,608 | 0,697 | 0,593 | 0,696 | 0,494 | 0,639 | 0,608 | 0,696 | 0,639 | 0,478 | 0,667 | 0,667 | 0,614 | |
DM3 | 0,696 | 0,696 | 0,697 | 0,593 | 0,607 | 1,013 | 0,639 | 0,696 | 0,607 | 0,639 | 0,667 | 0,667 | 0,667 | 0,772 | |
Dutch2 B.V | DM1 | 0,722 | 0,667 | 0,667 | 0,833 | 0,667 | 0,667 | 0,667 | 0,921 | 0,606 | 0,667 | 0,98 | 0,667 | 0,667 | 0,667 |
DM2 | 0,639 | 0,667 | 0,667 | 0,583 | 0,667 | 0,667 | 0,667 | 0,54 | 0,697 | 0,667 | 0,51 | 0,667 | 0,667 | 0,667 | |
DM3 | 0,639 | 0,667 | 0,667 | 0,583 | 0,667 | 0,667 | 0,667 | 0,54 | 0,697 | 0,667 | 0,51 | 0,667 | 0,667 | 0,667 | |
Wanhua | DM1 | 0,794 | 0,481 | 0,725 | 0,757 | 0,769 | 0,815 | 0,606 | 0,793 | 0,757 | 0,614 | 0,589 | 0,614 | 0,876 | 0,696 |
DM2 | 0,651 | 0,481 | 0,725 | 0,757 | 0,615 | 0,593 | 0,697 | 0,556 | 0,757 | 0,614 | 0,589 | 0,614 | 0,419 | 0,696 | |
DM3 | 0,555 | 1,037 | 0,55 | 0,486 | 0,615 | 0,593 | 0,697 | 0,651 | 0,486 | 0,772 | 0,822 | 0,772 | 0,705 | 0,607 | |
Vercolor | DM1 | 0,859 | 0,667 | 0,818 | 0,771 | 0,889 | 0,889 | 0,333 | 0,855 | 0,818 | 0,548 | 0,579 | 0,548 | 0,667 | 0,543 |
DM2 | 0,667 | 0,667 | 0,818 | 0,771 | 0,556 | 0,556 | 0,833 | 0,478 | 0,818 | 0,548 | 0,579 | 0,548 | 0,471 | 0,914 | |
DM3 | 0,474 | 0,667 | 0,364 | 0,458 | 0,556 | 0,556 | 0,833 | 0,667 | 0,364 | 0,905 | 0,842 | 0,905 | 0,863 | 0,543 | |
Ivonic | DM1 | 0,587 | 0,494 | 0,667 | 0,757 | 0,667 | 0,667 | 0,545 | 0,667 | 0,725 | 0,667 | 0,385 | 0,667 | 0,933 | 0,725 |
DM2 | 0,825 | 0,494 | 0,667 | 0,757 | 0,667 | 0,667 | 0,727 | 0,471 | 0,725 | 0,667 | 0,71 | 0,667 | 0,533 | 0,725 | |
DM3 | 0,587 | 1,013 | 0,667 | 0,486 | 0,667 | 0,667 | 0,727 | 0,863 | 0,55 | 0,667 | 0,905 | 0,667 | 0,533 | 0,55 | |
Plexint | DM1 | 0,963 | 0,757 | 0,852 | 0,852 | 0,667 | 0,833 | 0,222 | 0,933 | 0,863 | 0,863 | 0,863 | 0,373 | 0,374 | 0,863 |
DM2 | 0,621 | 0,757 | 0,296 | 0,296 | 0,667 | 0,583 | 0,889 | 0,533 | 0,863 | 0,863 | 0,863 | 1,013 | 0,703 | 0,863 | |
DM3 | 0,416 | 0,486 | 0,852 | 0,852 | 0,667 | 0,583 | 0,889 | 0,533 | 0,275 | 0,275 | 0,275 | 0,613 | 0,923 | 0,275 | |
Criteria weights | DM1 | 0,383 | 0,387 | 0,388 | 0,389 | 0,027 | 0,791 | 0,788 | 0,304 | 0,306 | 0,307 | 0,307 | 0,541 | 0,545 | 0,383 |
DM2 | 0,606 | 0,607 | 0,608 | 0,608 | 0,953 | 0,201 | 0,205 | 0,682 | 0,682 | 0,688 | 0,689 | 0,455 | 0,453 | 0,614 | |
DM3 | 0,728 | 0,777 | 0,779 | 0,779 | 0,064 | 0,406 | 0,414 | 0,616 | 0,616 | 0,617 | 0,617 | 0,913 | 0,908 | 0,768 |
Alternatives | Decision-Maker (DM) | CI |
---|---|---|
Itelyum Regeneration Spa | DM1 | 0,907 |
DM2 | 0,954 | |
DM3 | 0,913 | |
Galco | DM1 | 0,855 |
DM2 | 0,953 | |
DM3 | 1,013 | |
Dutch2 B. V | DM1 | 0,98 |
DM2 | 0,953 | |
DM3 | 0,913 | |
Wanhua | DM1 | 0,876 |
DM2 | 0,953 | |
DM3 | 1,037 | |
Vercolor | DM1 | 0,889 |
DM2 | 0,953 | |
DM3 | 0,913 | |
Ivonic | DM1 | 0,933 |
DM2 | 0,953 | |
DM3 | 1,013 | |
Plexint | DM1 | 0,963 |
DM2 | 1,013 | |
DM3 | 0,923 |
Alternatives \Distance | Ci | Ranking |
---|---|---|
Itelyum Regeneration Spa | 0,375 | 6 |
Galco | 0,862 | 1 |
Dutch2 B. V | 0,157 | 7 |
Wanhua | 0,380 | 5 |
Vercolor | 0,665 | 3 |
Ivonic | 0,622 | 4 |
Plexint | 0,689 | 2 |
GSSP | Green Suppliers‘Selection Problem |
H-FTOPSIS | Hierarchical Fuzzy Technique for Order of Preference by Similarity to Ideal Solution |
H-FTOPSIS-CP | Hierarchical Fuzzy TOPSIS Based on Consensus Process |
DM | Decision Maker |
MCGDM | Multicriteria Group Decision Making |
SWARA | Stepwise Weight Assessment Ratio Analysis |
CoCoSo | Combined Compromise Solution |
IT2TrFNs | Interval Type-2 Trapezoidal Fuzzy Numbers |
PF | Pythagorean Fuzzy |
AHP | Analytic Hierarchy Process |
VIKOR-MRM | VIKOR Median Ranking Method |
EDAS | Evaluation Based on Distance from Average Solution |
PLTs | Probabilistic Linguistic Term sets |
CI | Consistency Index |
C | Criteria |
Wj | Weight |
P | Individual Assessment of D |
TFN | Triangular Fuzzy Number |
𝑴(V𝒊𝒋)) | Generalized Mean |
[1] | Ateş N. Y., Çevik S., Kahraman C., Gülbay M. & Erdoğan S. A. (2006). Multi Attribute Performance Evaluation Using a Hierarchical Fuzzy TOPSIS Method. Studies in Fuzziness and Soft Computing, Vol 537–572. |
[2] | Brahmi H. and Loukil M. T, (2021), A New multicriteria decision support tool based on fuzzy SWARA and TOPSIS, Multiple Criteria Decision Making (16), Vol 16, pp. 5-22. |
[3] | Cabrerizo F., Ureña R., Pedrycz W., & Herrera-Viedma E. (2014). Building consensus in group decision making with an allocation of information granularity. Fuzzy Sets and Systems, 255, Vol 115–127. |
[4] | Dos-Santos B. M., Godoy L. P., & Campos L. M. S. (2018). Performance Evaluation of Green Suppliers using Entropy-TOPSIS-F. Journal of Cleaner Production. |
[5] | Gao H., Ju Y., Santibanez Gonzalez E. D. R., & Zhang W. (2019). Green supplier selection in electronics manufacturing: An approach based on consensus decision making. Journal of Cleaner Production, 118781. |
[6] | Gupta S., Soni U., & Kumar G. (2019). Green supplier selection using multi-criterion decision making under fuzzy environment: A case study in automotive industry. Computers & Industrial Engineering. |
[7] | Herrera-Viedma E., Martínez L., Mata F. & Chiclana F. (2005). A consensus support systems model for group decision making problems with multigranular linguistic preference relations. IEEE Transactions on Fuzzy Systems, 13, Vol 644–658. |
[8] | Huang J., Jiang N., Chen J., Balezentis T., & Streimikiene D. (2021). Multi-criteria group decision-making method for green supplier selection based on distributed interval variables. Economic Research-Ekonomska Istraživanja, Vol 1–16. |
[9] | Li H., Wu P., Zhou L., & Chen H. (2021). A new multi-criteria group decision-making method based on consensus mechanism in an interval type-2 fuzzy environment. Journal of Intelligent & Fuzzy Systems, 40(6), 10935–10953. |
[10] | Liang R., & Chong H.-Y. (2019). A hybrid group decision model for green supplier selection: a case study of megaprojects. Engineering, Construction and Architectural Management. |
[11] | Lu JP, Wei C, Wu J & Wei GW (2019). TOPSIS method for probabilistic linguistic MAGDM with entropy weight and its application to supplier selection of new agricultural machinery products. Entropy 21: 953. |
[12] | Mousavi S. M., Foroozesh N., Zavadskas E. K., & Antucheviciene J. (2020). A new soft computing approach for green supplier selection problem with interval type-2 trapezoidal fuzzy statistical group decision and avoidance of information loss. Soft Computing, 24(16), Vol 12313–12327. |
[13] | Perçin Selçuk (2019), An Integrated Fuzzy SWARA and Fuzzy AD Approach for Outsourcing Provider Selection, Journal of Manufacturing Technology Management, |
[14] | Roshandel, J., Miri-Nargesi S. S. & Hatami-Shirkouhi L. (2013). Evaluating and selecting the supplier in detergent production industry using hierarchical fuzzy TOPSIS. Applied Mathematical Modelling, 37(24), Vol 10170–10181. |
[15] | Wei G., Wei C. & Guo Y. (2021). EDAS method for probabilistic linguistic multiple attribute group decision making and their application to green supplier selection. Soft Computing, 25(14), Vol 9045–9053. |
[16] | Wen Z., Liao H., Ren R., Bai C., Zavadskas E. K., Antucheviciene J. & Al-Barakati, A. (2019). Cold chain logistics management of medicine with an integrated multi-criteria decision- making method. International Journal of Environmental Research and Public Health, 16(23), 4843. |
[17] | Wibowo S. & Deng, H. (2013). Consensus-based decision support for multicriteria group decision making. Computers & Industrial Engineering, 66(4), Vol 625–633. |
[18] | Xu D., Cui X. & Xian, H. (2020). An Extended EDAS Method with a Single-Valued Complex Neutrosophic Set and Its Application in Green Supplier Selection. Mathematics, 8(2), 282. |
[19] | Zamora Y. (2020). Consensus building in a group decision-making process. Pesquisa Operacional (2020) 40: e235350 p. 1-15 |
[20] | Zhou F. & Chen T.-Y. (2020). An Integrated Multicriteria Group Decision-Making Approach for Green Supplier Selection Under Pythagorean Fuzzy Scenarios. IEEE Access, 8, Vol 165216–165231. |
[21] | Zouggari A.& Benyoucef L. (2011), “Une approche couplant logique floue et capitalisation des connaissances pour la résolution du problème de choix des fournisseurs”, Mathématiques générales [math. GM], Université Paul Verlaine – Metz, |
APA Style
Brahmi, H., Loukil, T. M., Ghram, M. (2024). A Novel H-FTOPSIS Based Consensus Process for Green Suppliers’ Selection in the Context of Group Decision Making. Advances in Applied Sciences, 9(4), 87-98. https://doi.org/10.11648/j.aas.20240904.12
ACS Style
Brahmi, H.; Loukil, T. M.; Ghram, M. A Novel H-FTOPSIS Based Consensus Process for Green Suppliers’ Selection in the Context of Group Decision Making. Adv. Appl. Sci. 2024, 9(4), 87-98. doi: 10.11648/j.aas.20240904.12
@article{10.11648/j.aas.20240904.12, author = {Hichem Brahmi and Taicir Moalla Loukil and Maroua Ghram}, title = {A Novel H-FTOPSIS Based Consensus Process for Green Suppliers’ Selection in the Context of Group Decision Making }, journal = {Advances in Applied Sciences}, volume = {9}, number = {4}, pages = {87-98}, doi = {10.11648/j.aas.20240904.12}, url = {https://doi.org/10.11648/j.aas.20240904.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.aas.20240904.12}, abstract = {Recently, green suppliers ‘selection problem (GSSP) is becoming a trend of any organization in order to satisfy their needs regarding environmental issues. It is one of the crucial activities in the development of the green supply chain and it attracted many researchers. As a result, many methods in the literature have dealt with this problem based on multi-criteria group decision-making ignoring the degree of consensus between the decision-makers, they take into consideration the level of priority between the decision-makers and the interdependence between the criteria. Due to the complexity of real environments and the subjective nature of human judgments, the proposal of a consensus model becomes very interesting in order to find agreements between decision makers using preference relations. We will present in this paper a study of the literature on the problems of consensus and selection of green suppliers, and then propose a model which is an extension of Hierarchical Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (H-FTOPSIS) by integrating the concept of consensus. To the best of our knowledge, this combination with a consensus process has not been previously developed, and we did not find any related literature on this specific combination. This research bridges that gap and presents a novel approach. The proposed model is applied in this study for the first time. }, year = {2024} }
TY - JOUR T1 - A Novel H-FTOPSIS Based Consensus Process for Green Suppliers’ Selection in the Context of Group Decision Making AU - Hichem Brahmi AU - Taicir Moalla Loukil AU - Maroua Ghram Y1 - 2024/12/16 PY - 2024 N1 - https://doi.org/10.11648/j.aas.20240904.12 DO - 10.11648/j.aas.20240904.12 T2 - Advances in Applied Sciences JF - Advances in Applied Sciences JO - Advances in Applied Sciences SP - 87 EP - 98 PB - Science Publishing Group SN - 2575-1514 UR - https://doi.org/10.11648/j.aas.20240904.12 AB - Recently, green suppliers ‘selection problem (GSSP) is becoming a trend of any organization in order to satisfy their needs regarding environmental issues. It is one of the crucial activities in the development of the green supply chain and it attracted many researchers. As a result, many methods in the literature have dealt with this problem based on multi-criteria group decision-making ignoring the degree of consensus between the decision-makers, they take into consideration the level of priority between the decision-makers and the interdependence between the criteria. Due to the complexity of real environments and the subjective nature of human judgments, the proposal of a consensus model becomes very interesting in order to find agreements between decision makers using preference relations. We will present in this paper a study of the literature on the problems of consensus and selection of green suppliers, and then propose a model which is an extension of Hierarchical Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (H-FTOPSIS) by integrating the concept of consensus. To the best of our knowledge, this combination with a consensus process has not been previously developed, and we did not find any related literature on this specific combination. This research bridges that gap and presents a novel approach. The proposed model is applied in this study for the first time. VL - 9 IS - 4 ER -