American Journal of Environmental Protection

Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Research Article |

Impacts of Aluminium and Nitrogen Compounds (Nitrate and Ammonium) on the Physico-Chemical Quality of Groundwater in the District of Abidjan

The boreholes use to supply drinking water in the District of Abidjan are located in heavily urbanised areas. This high level of urbanisation is increasingly contributing to the deterioration of groundwater quality. The objective of this study is to assess the impact of aluminium and nitrogen compounds on the physico-chemical quality of groundwater in the District of Abidjan. To achieve this objective, the physico-chemical parameters of fifty (50) groundwater samples were determined over a four year period (2019-2022) during the dry and rainy seasons. A total of 400 groundwater samples were analysed. With the exception of aluminium, nitrate and ammonium, all the chemical elements analysed namely Ca2+, Mg2+, K+, O2; SO42-, SiO2, PO43-, NO2-, Cl-, Mn2+, Cu2+, Zn2+, Fe2+, Fe, H2S and F- were below the values recommended by world health organisation for water intended for human consumption. High levels of aluminium, nitrate and ammonium were observed in 49.5%, 10.75% and 18, 25% of the water samples analysed respectively. The study of spatial and temporal variation shows that groundwater pollution depends on the geographical location of the groundwater and not on the seasons. Principal Component Analysis (ACP) reveals the natural and anthropogenic mineralisation of groundwater.

Abidjan, Groundwater, Aluminium, Nitrate, Ammonium, Principal Component Analysis

Ibrahim Savadogo, Sadat Aw, Yeï Marie Solange Oga. (2023). Impacts of Aluminium and Nitrogen Compounds (Nitrate and Ammonium) on the Physico-Chemical Quality of Groundwater in the District of Abidjan. American Journal of Environmental Protection, 12(6), 150-159.

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Kouamé A. A (2018). Apport de la modélisation hydrogéologique dans l’étude des risques de contamination de la nappe d’Abidjan par les hydrocarbures: Cas du benzène dans le District d’Abidjan. Thèse de Doctorat, Université de Lausanne, 312p.
2. Matini L., Moutou J. M., Kongo-Mantono M. S. (2009). Evaluation hydro-chimique des eaux souterraines en milieu urbain au Sud-Ouest de Brazzaville, Congo. Afrique SCIENCE, 05 (1): 82-98.
3. RGPH (2021). Recensement Général de la Population et de l’Habitats. Nombre d’habitants recensés dans le District d’Abidjan.
4. Oga M. S. (1998). Ressources en eaux souterraines dans la région du Grand-Abidjan (Côte d’Ivoire): Approches hydrochimique et isotopique. Thèse de Doctorat de l’Université de Paris XI Orsay, 241 p.
5. Ahoussi K. E. (2003). Distribution spatiale des composés minéraux: nitrates, ammonium, sulfates et aluminium dans la nappe d’Abidjan. Mémoire DEA, Université de Cocody, 69 p.
6. Jourda J. P., Kouamé K. J., Saley M. B., Kouadio B. H., Oga Y. S. M. et Deh S. (2006). Contamination of the Abidjan Aquifer by sewage: An assessment of extent and strategies for protection. Groundwater pollution in Africa, Redactors Yongxin Xu and Brent Usher, Editors Taylor & Francis/Balkema, Great-Britain, pp. 291-300.
7. Oga YMS., Sacchi. E., Zuppi GM.(2007). Origin and effects of nitrogen pollution in groundwater traced by δ15 N-NO3 and δ18 O-NO3: the case of Abidjan (IVOIRY COAST). Advances in isotope hydrology and its role in sustainable water resources management (HIS-2007) Proceceeding of a symposium Vienna 21-25 mai 2007 Vol. 1. pp 139-147. http//WWWPUB.IAEA.ORG/MTCD/PUBLICATIONS/PDF/PUB1310WEB.PDB.
8. Ahoussi K. E. (2008). Evaluation quantitative et qualitative des ressources en eau dans le Sud de la Côte d’Ivoire. Application de l’hydrochimie et des isotopes de l’environnement à l’étude des aquifères continus et discontinus de la région d’Abidjan-Agboville. Thèse de Doctorat, Université de Cocody, 276p.
9. Soro N., Ouattara. L., Dongo K., Kouadio K. E., ahoussi K. E., Soro G., Oga M. S., Savane I., Biemi J. (2010). Déchets municipaux dans le District d’Abidjan en Côte d’Ivoire: sources potentielles de pollution des eaux souterraines. Int. J. Biol. Chem. Sci. 4 (6): 2203-2219.
10. Dahl, C., Sogaard, A. J., Tell, G. S., Flaten, T. P., Hongve, D., Omsland, T. K., Holvik, K., Meyer, H. E., Aamodt, G. (2014). Do cadmium, lead, and aluminum in drinking water increase the risk of hip fractures? A NOREPOS study. Biol. Trace Elem. Res., 157 (1): 14–2397-5902.
11. Callan, A. C., Devine, A., Qi, L., Ng, J. C., Hinwood, A. L. (2015). Investigation of the relationship between low environmental exposure to metals and bone mineral density, bone resorption and renal function. Int. J. Hyg. Environ. Health, 218 (5): 444–451.
12. Huang, J., Wu, J., Li, T., Song, X., Zhang, B., Zhang, P., Zheng, X. (2011). Effect of exposure to trace elementsin the soil on the prevalence of neural tube defects in a high-risk area of China. Biomed. Environ. Sci., 24 (2): 94–101.
13. Giaccio, L., Cicchella, D., Vivo, B. D., Lombardi, G., Rosa, M. D. (2012). Does heavy metals pollution affect semen quality in men? A case of study in the metropolitan area of Naples (Italy). J. Geochem. Explor., 112: 218–225.
14. Karakis, I., Sarov, B., Landau, D., Manor, E., Yitshak-Sade, M., Rotenberg, M., Hershkovitz, R., Grotto, I., Gurevich, E., Novack, L. (2014). Association between prenatal exposure to metals and neonatal morbidity. J. Toxicol. Env. Health. A., 77 (21): 1281–1284.
15. Oluyomi A. O., Paul V. S., Jeffery T. D. (2008). Natural and synthetic receptors for nitrate anion. Supramolecular chemistry, Volume 20, N°1-2, 169-190.
16. Jourda J. P. (1987). Contribution à l'étude Géologique et Hydrogéologique du Grand Abidjan (Côte d'Ivoire). Thèse de Doctorat 3ème cycle, Université Scientifique, Technique et médicale de Grenoble, 319 p.
17. Savane I., Goula B. T. A., DouaguI G. A., Kouame K. I. (2006). Vulnerability assessment of the Abidjan Quaternary Aquifer using the DRASTIC method. Dans Groundwater pollution in Africa, pp. 115-124.
18. Rodier J., Legube B., Merlet N (2009). L'analyse de l'eau, 9ème Edition, Dunod, Paris, France, 1529 p.
19. WHO (2017). "Guidelines to Dinking –Water Quality (fourth edition)", (NLM classification: WA 675) 564 p.
20. Jiang Y., Wu Y., Groves C., Yuan D., Kambesis P. (2009). Natural and anthropogenic factors affecting groundwater quality in the Nandong karst underground river system in Yunan, China. Journal of Contaminant Hydrology, 109: 49-61. DOI: 8.001.
21. Kim K. H., Yun S. T., Choi B. Y., Chae G. T., Joo Y., Kim K., Kim H. S. (2009). Hydrochemical and multivariate statistical interpretations of the spatial controls of nitrate concentrations in a shallow alluvial aquifer around oxbow lakes (Osong area, central Korea). Journal of Contaminant Hydrology, 107: 114-127. DOI: 4.007.
22. Aw Sadat., N’Goran Z. B. E., Siaka S., Parinet. B. (2011). Intérêt de l’analyse multidimensionnelle pour évaluation de la qualité physico-chimique de l’eau d’un système lacustre tropical: Cas des lacs de Yamoussoukro (Côte d’Ivoire). Journal of Applied Biosciences 38: 2573-2585 ISSN 19.
23. Yidana SM, Yiran GB, Sakyi PA, Nude PM, Banoeng-Yakubo B. (2011). Groundwater evolution in the Voltaian Basin, Ghana; An application of multivariate statistical analyses to hydrochemical data. Natural Science, 3 (10): 837-854. DOI: DOI:
24. Soro G., Soro T. D., Fossou. M. R. N., Adjiri. O. A., Soro. N (2019). Application des méthodes statistiques multivariées à l’étude hydrochimique des eaux souterraines de la région des lacs (centre de la Côte d’Ivoire). Int. J. Biol. Chem. Sci. 13 (3): 1870-1889.
25. Vega, M., Pardo R., Barrado E., Deban L (1998). Assessment of seasonal and pollution effects on the quality of river water by exploratory data analysis. Water Research 32, 3581-3592.
26. Adiaffi B., Marlin C., Oga YMS., Massault M., Noret A., Biémi J. (2009). Palaeoclimatic and deforestation effect on the coastal fresh groundwater resources of SE Ivory Coast from isotopic and chemical evidence. J. Hydrol., 1-2: 130-141.
27. Mridul B., Bhabajit B., Hari P. S (2010). Seasonal variations of lead, of arsenic, cadmium and aluminium contamination of groundwater in Dhemaji District, Assam, India. Environmental Monitoring and assessment 170: 435-351 DOI10.1007/S106661-009-1237-6.
28. Filipek, L. H., Nordstrom, D. K., Ficklin, W. H. (1987). Interaction of acid mine drainage with waters and sediments of West Squaw Creek in the West Shasta mining district, California. Environ Sci Technol., 21, 388–396.
29. Lantzy, R. J., MacKenzie, F. T. (1979). Atmospheric trace metals: global cycles and assessment of man’s impact. Geochim Cosmochim Acta, 43, 511–525.
30. RNCan (2018). Faits sur l’aluminium, Ressources naturelles Canada. Dernière mise à jour le: 20 avril 2018. Gouvernement du Canada, Ottawa. Accessible à l’adresse:
31. Alagbe S. A. (2006). Preliminary evaluation of hydrochemistry of the Kalambaina Formation, Sokoto Basin, Nigeria. Environ. Geol., 51: 39-45. DOI: 0060302.
32. Loroux B. F. E. (1978). Contribution à l’étude hydrogéologique du bassin sédimentaire de Côte d’Ivoire. Thèse de Troisième Cycle, Université de Bordeau I, 93p.
33. Kouadio L. P, Abdoulaye S, Jourda P, Loba M, Rambaud A. (1998). Conséquences de la pollution urbaine sur la distribution d’eau d’alimentation publique à Abidjan. Cahier de l’Association Scientifique Européenne pour l’Eau et la Santé, 3 (1): 41-44.
34. Traore A., Soro T. D., Dibi B., Yao A J. S (2021). Caractérisation hydrogéochimique des eaux souterraines du département de Man (Ouest de la Côte d’Ivoire). Int. J. Biol. Chem. Sci. 16 (1): 498-514, DOI: