| Peer-Reviewed

Synthesis of Schiff Bases Compounds from Oxamic Hydrazide: Spectroscopic Characterization, X–ray Diffraction Structure and Antioxidant Activity Study

Received: 2 January 2021    Accepted: 11 January 2021    Published: 22 January 2021
Views:       Downloads:
Abstract

The compounds (E)–2–amino–N'–(1–(2–hydroxyphenyl)ethylidene)–2–oxoacetohydrazide (I) and (E)–N'–(2–hydroxy–3–methoxybenzylidene)–2–amino–2–oxoacetohydrazide (II) were synthetized by the 1:1 ratio condensation reaction of oxamic hydrazide and 2–hydroxyacetophenone or o–vanillin respectively. The two compounds were characterized by physico–chemical analyses, elemental analysis, FTIR, 1H and 13C NMR spectroscopies techniques. The structure of the compound (I) was determined by single–crystal X–ray diffraction study. The compound (I) (C10H11N3O3) crystallises in the triclinic space group P–1 with the following unit cell parameters: a = 7.0399 (5) Å, b = 8.6252 (8) Å, c = 9.5474 (9) Å, a = 81.730 (3)°, b = 72.738 (3)°, g = 67.450 (3)°, V = 510.99 (8) Å3, Z = 2, T = 173 (2) K, m = 0.11 mm–1, Dcalc = 1.438 g/cm3, Rint = 0.028, Rsigma = 0.073. The oxamic hydrazide moiety of the molecule is slightly twisted as reflected by the torsion angles values of 177.2 (2)° [N1–N2–C9–C10], –171.3 (3)° [N2–C9–C10–N3], –4.6 (4)° [O2–C9–N2–N1] and 8.4 (4)° [O3–C10–C9–N2]. The intramolecular hydrogen bond O1(phenol)–H1•••N1(hydrazide) which close in S (6) ring stabilized the conformation. The intermolecular hydrogen bonds, C3–H3•••O1i(phenol) (i: −x+1, −y, −z+1), N3(amide)–H3A•••O3ii(amide) (ii: −x+1, −y+2, −z) and N3(amide)–H3B•••O2iii(hydrazide) (iii: −x+1, −y+1, −z) lead to the formation of sheets parallel to ac plane. Compounds (I) and (II) showed antioxidant activities less than 10% inhibition of DPPH.

Published in American Journal of Applied Chemistry (Volume 9, Issue 1)
DOI 10.11648/j.ajac.20210901.12
Page(s) 6-12
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Oxamic Hydrazide, 2–hydroxyacetophenone, O–vanillin, Antioxidant, X–ray

References
[1] Čobeljić, B., Pevec, A., Turel, I., Spasojević, V., Milčić, M., Mitić, D., Sladić, D. and Anđelković, K. (2014). Analysis of the structures of the Cu (I) and Cu (II) complexes with 3–acetylpyridine and thiocyanate. Polyhedron, 69: 77–83.
[2] Gutman, C. T. and Brunold, T. C. (2012). Spectroscopic and computational studies of a small–molecule functional mimic of iron superoxide dismutase, iron 2,6–diacetylpyridinebis (semioxamazide). Inorganic Chemistry, 51 (23): 12729–12737.
[3] Gutman, C. T., Guzei, I. A. and Brunold, T. C. (2013). Structural, spectroscopic, and computational characterization of the azide adduct of FeIII (2,6–diacetylpyridinebis (semioxamazide)), a functional analogue of iron superoxide dismutase. Inorganic Chemistry, 52 (15): 8909–8918.
[4] Jarestan, M., Khalatbari, K., pouraei, A., Sadat Shandiz, S. A., Beigi, S., Hedayati, M., Majlesi, A., Akbari, F. and Salehzadeh, A. (2020). Preparation, characterization, and anticancer efficacy of novel cobalt oxide nanoparticles conjugated with thiosemicarbazide. 3 Biotech, 10 (5): 230.
[5] Haba, P., Sow, M. M., Sarr, M., Thiam, I. E., Diaw, M. and Gaye, M. L. (2020). Syntheses, characterization and X–ray crystal structure of polymeric heteronuclear oxo–bridged Fe/Na assembled with salen–type Schiff base and dicyanamide. Sciences Journal of Chemistry, 8 (2): 20–27.
[6] Li, S., Khan, M. H., Wang, X., Cai, M., Zhang, J., Jiang, M., Zhang, Z., Wen, X., Liang, H. and Yang, F. (2020). Synthesis of a series of novel In (III) 2,6–diacetylpyridine bis (thiosemicarbazide) complexes: structure, anticancer function and mechanism. Dalton Trans, 49 (47): 17207–17220.
[7] Kane, C. H., Thiam, E. I., Tamboura, F. B., Gaye, M. and Retailleau, P. (2012). Bis{2–Amino–2–oxo–N–[(1E)–1– (pyridin–2–yl–kN)ethylidene]acetohydrazidato–k2N′, O1}nickel (II). Acta Crystallographica E, 68 (5), m553.
[8] Dimmock, J. R., Vashishtha, S. C. and Stables, J. P. (2000). Anticonvulsant properties of various acetylhydrazones, oxamoylhydrazones and semicarbazones derived from aromatic and unsaturated carbonyl compounds. Eurpean Journal of Medicinal Chemistry, 35 (2): 241–248.
[9] Sumar, M., Ivanovic–Burmazovic, I., Hodzic, I. and Andjelkovic, K. (2002). Pentagonal–bipyramidal Mn (II) and Zn (II) complexes with 2′,2′″– (2,6–pyridindiyldi–ethylidene)dioxamohydrazide. Synthesis and Reactivity in Inorganic and Metal–Organic Chemistry, 32 (4): 721–737.
[10] Quaeyhaegens, F., Desseyn, H. O., Bracke, B. and Lenstra, A. T. H. (1990). Vibrational analysis of different isomers of oxalyldihydrazide and the crystal structure of the “trans–trans” form. Journal of Molecular Structure, 238: 139–157.
[11] Quaeyhaegens, F., Hofmans, H. and Desseyn, H. O. (1987). The vibrational spectra of the Ni (II) and Cu (II) complexes with oxamic hydrazide. Spectrochimica Acta Part A, 43 (4): 531–537.
[12] Quaeyhaegens, F., Perlepes, S. P. and Desseyn, H. O. (1987). The vibrational spectra of Pd (II) complexes with planar monosubstituted oxamides. Spectrochimica Acta Part A, 43 (7): 917–923.
[13] Perlepes, S. P., Quaeyhaegens, F. J. and Desseyn, H. O. (1990). Synthesis, spectroscopy and thermal properties of the nickel (II), palladium (II) and copper (II) complexes of oxalyldihydrazide. Transition Metal Chemistry, 15 (2): 132–140.
[14] Huynh–Dinh, T., Igolen, J., Bisagni, E., Marquet, J. P. and Civier, A. (1977). Synthesis of C–nucleosides. Part 14. 5 (3)–glycosyl–1,2,4–triazole–3 (5) carboxamides as analogues of ribavirin. Journal of Chemical Society Perkin Trans 1, 7, 761–764.
[15] Chudinov, M. V., Konstantinova, I. D., Ryzhova, O. I., Esipov, R. S., Yurkevich, A. M., Shvets, V. I. and Miroshnikov, A. I. (2005). A new effective method for the synthesis of 1,2,4–triazole–3–carboxamide and ribavirin derivatives. Pharmaceutical Chemistry Journal, 39 (4): 212–215.
[16] Lan, Y., Yuan, F., Tadesse Haile Fereja, T. H., Lou, B., Han, S., Li, J. and Xu, G. (2019). Electrochemiluminescence of 3,4,9,10–perylenetetracarboxylic acid/oxamic hydrazide and its application in the detection of tannic acid. Analyst, 144 (15): 4449–4720.
[17] Chen, M., Ning, Z., Chen, K., Zhang, Y. and Shen, Y. (2020). Recent advances of electrochemiluminescent system in bioassay. Journal of Analysis and Testing, 4 (2): 57–75.
[18] Narang, R., Narasimhan, B. and Sharma, S. (2012). A review on biological activities and chemical synthesis of hydrazide derivatives. Current Medicinal Chemistry, 19 (4): 569–612.
[19] Hakobyan, S., Boily, J.–F. and Ramstedt, M. (2014). Proton and gallium (III) binding properties of a biologically active salicylidene acylhydrazide. Journal of Inorganic Biochemistry, 138: 9–15.
[20] Altowyan, M. S., Ali, M., Soliman, S. M., Al–Majid, A. M., Islam, M. S., Yousuf, S., Choudhary, M. I., Ghabbour, H. A. and Barakat, A. (2020). Synthesis, computational studies and biological activity of oxamohydrazide derivatives bearing isatin and ferrocene scaffolds. Journal of Molecular Structure, 1202: 127372.
[21] Mohan, M., Agarawal, A. and Jha, N. K. (1988). Synthesis, characterization, and antitumor properties of some metal complexes of 2,6–diacetylpyridine bis (N-4–azacyclic thiosemicarbazones). Journal of Inorganic Biochemistry, 34 (1): 41–54.
[22] Ivanovic–Burmazovic, I., Hamza, M. S. A. and van Eldik, R. (2002). A detailed mechanistic study of the substitution behavior of an unusual seven–coordinate iron (III) complex in aqueous solution. Inorganic Chemistry, 41 (20): 5150–5161.
[23] El–Toukhy, A. (1991). Stoichiometry, Products and kinetics of oxidation of neutral 2,6–diacetylpyridine–bis (N–4–azacyclic thiosemicarbazone) Cobalt (II) complexes by dioxygen in aprotic solvents. Inorganica Chimica Acta, 180 (1): 85–91.
[24] de Sousa, G. F., Deflon, V. M., Gambardella, M. T. do P., Francisco, R. H. P., Ardisson, J. D. and Niquet, E. (2006). X–Ray crystallographic and mössbauer spectroscopic applications in dependence of partial quadrupole splitting, [R], on the C−Sn−C angle in seven–coordinated diorganotin (IV) complexes. Inorganic Chemistry, 45 (11): 4518–4525.
[25] Aljahdali, M., El–Sherif, A. A., Shoukry, M. M., Hosny, W. M. and Abd–Elmoghny, M. G. (2013). Complex formation equilibria of unusual seven coordinate Fe (III) complexes with DNA constituents. Journal of Solution Chemistry, 42 (8): 1663–1679.
[26] Liu, G.-F., Filipović, M., Heinemann, F. W. and Ivanović-Burmazović, I. (2007). Seven-coordinate iron and manganese complexes with acyclic and rigid pentadentate chelates and their superoxide dismutase activity. Inorganic Chemistry, 46 (21): 8825–8835.
[27] Gaye, P. A., Sy, A., Sarr, A. D., Gaye M. and Besnard, C. (2011). 1– (Thiophen–2–yl)ethanone thiosemicarbazone. Acta Crystallographica E, 67 (5): o1168.
[28] Akhtar, P., Yaakob, Z., Ahmed, Y., Shahinuzzaman, M. and Hyder, M. K. M. (2018). Total phenolic contents and free radical scavenging activity of different parts of Jatropha species. Asian Journal of Chemistry, 30 (2): 365–370.
[29] Sheldrick, G. M. (2015). It SHELXT–Integrated space–group and crystal–structure determination. Acta Crystallographica A, 71 (1): 3–8.
[30] Sheldrick, G. M. (2015). Crystal structure refinement with It SHELXL. Acta Crystallographica C, 71 (1): 3–8.
[31] Farrugia, L. J. (2012). It WinGX and It ORTEP for Windows: An Update. Journal of Applied Crystallographica, 45 (4): 849–854.
[32] Singh, A. K., Pandey, O. P. and Sengupta, S. K. (2013). Synthesis, spectral and antimicrobial activity of Zn (II) complexes with Schiff bases derived from 2–hydrazino–5–[substituted phenyl]–1,3,4–thiadiazole and benzaldehyde /2–hydroxyacetophenone / indoline–2,3–dione. Spectrochimica Acta Part A, 113: 393–399.
[33] Saghatforoush, L. A., Hosseinpour, S., Bezpalko, M. W. and Kassel, W. S. (2019). X–Ray crystal structural and spectral studies of copper (II) and nickel (II) complexes of functionalized bis (thiosemicarbazone) ligands and investigation of their electrochemical behavior. Inorganica Chimica Acta, 484: 527–534.
[34] Tripathi, G. N. R. and Katon, J. E. (1979). Vibrational spectra and structure of crystalline oxalyl hydrazide and semioxamazide. Journal of Molecular Structure, 54: 19–29.
[35] Mashevskaya, M. S., Kolla, V. É., Nazmetdinov, F. Ya., Plaksina, A. N. and Semenova, Z. N. (1991). Synthesis of oxalic acid arylidenedihydrazides and their biological activity. Pharmaceutical Chemistry Journal, 25 (2), 83–85.
[36] Chandra, S. and Sharma, A. K. (2009). Nickel (II) and Copper (II) complexes with Schiff base ligand 2,6–diacetylpyridine bis (carbohydrazone): synthesis and IR, Mass, 1H NMR, electronic and EPR spectral studies. Spectrochimica Acta Part A, 72 (4): 851–857.
[37] Karimian, R., Hosseini–Monfared, H., Bikas, R., Arslan, N. B., Kazak, C. and Koroglu, A. (2012). (E,E)–N'–4–[(2–benzoylhydrazin–1–ylidene)methyl]benzylidenebenzo hydrazide. Acta Crystallographica E, 68 (5): o1433.
[38] Tai, X.–S., Yin, J. and Kong, F.–Y. (2007). Crystal structure of 2–carboxybenzaldehyde furan–2–carbohydrazide methanol hemisolvate, C13H10N2O4•0.5CH3OH. Zeitschrift für Kristallographie–New Crystal Structures, 222 (4): 401–402.
[39] Monfared, H. H., Bikas, R. and Mayer, P. (2010). (E)–3–Hydroxy–N'– (2–hydroxybenzylidene)–2–naphthohydrazide. Acta Crystallographica E, 66 (1), o236–o237.
[40] Taha, Z. A., Ajlouni, A. M., Momani, W. A. and Al–Ghzawi, A. A. (2011). Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand. Spectrochimica Acta Part A, 81 (1): 570–577.
[41] Foti, M. C., Daquino, C. and Geraci, C. (2004). Electron–transfer reaction of cinnamic acids and their methyl esters with the DPPH• radical in alcoholic solutions. Journal of Organic Chemistry, 69 (7): 2309–2314.
Cite This Article
  • APA Style

    Fatou Faye, Amadou Guèye, Papa Samba Camara, Aïssatou Alioune Gaye, Farba Bouyagui Tamboura, et al. (2021). Synthesis of Schiff Bases Compounds from Oxamic Hydrazide: Spectroscopic Characterization, X–ray Diffraction Structure and Antioxidant Activity Study. American Journal of Applied Chemistry, 9(1), 6-12. https://doi.org/10.11648/j.ajac.20210901.12

    Copy | Download

    ACS Style

    Fatou Faye; Amadou Guèye; Papa Samba Camara; Aïssatou Alioune Gaye; Farba Bouyagui Tamboura, et al. Synthesis of Schiff Bases Compounds from Oxamic Hydrazide: Spectroscopic Characterization, X–ray Diffraction Structure and Antioxidant Activity Study. Am. J. Appl. Chem. 2021, 9(1), 6-12. doi: 10.11648/j.ajac.20210901.12

    Copy | Download

    AMA Style

    Fatou Faye, Amadou Guèye, Papa Samba Camara, Aïssatou Alioune Gaye, Farba Bouyagui Tamboura, et al. Synthesis of Schiff Bases Compounds from Oxamic Hydrazide: Spectroscopic Characterization, X–ray Diffraction Structure and Antioxidant Activity Study. Am J Appl Chem. 2021;9(1):6-12. doi: 10.11648/j.ajac.20210901.12

    Copy | Download

  • @article{10.11648/j.ajac.20210901.12,
      author = {Fatou Faye and Amadou Guèye and Papa Samba Camara and Aïssatou Alioune Gaye and Farba Bouyagui Tamboura and Nathalie Gruber and Mohamed Gaye},
      title = {Synthesis of Schiff Bases Compounds from Oxamic Hydrazide: Spectroscopic Characterization, X–ray Diffraction Structure and Antioxidant Activity Study},
      journal = {American Journal of Applied Chemistry},
      volume = {9},
      number = {1},
      pages = {6-12},
      doi = {10.11648/j.ajac.20210901.12},
      url = {https://doi.org/10.11648/j.ajac.20210901.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajac.20210901.12},
      abstract = {The compounds (E)–2–amino–N'–(1–(2–hydroxyphenyl)ethylidene)–2–oxoacetohydrazide (I) and (E)–N'–(2–hydroxy–3–methoxybenzylidene)–2–amino–2–oxoacetohydrazide (II) were synthetized by the 1:1 ratio condensation reaction of oxamic hydrazide and 2–hydroxyacetophenone or o–vanillin respectively. The two compounds were characterized by physico–chemical analyses, elemental analysis, FTIR, 1H and 13C NMR spectroscopies techniques. The structure of the compound (I) was determined by single–crystal X–ray diffraction study. The compound (I) (C10H11N3O3) crystallises in the triclinic space group P–1 with the following unit cell parameters: a = 7.0399 (5) Å, b = 8.6252 (8) Å, c = 9.5474 (9) Å, a = 81.730 (3)°, b = 72.738 (3)°, g = 67.450 (3)°, V = 510.99 (8) Å3, Z = 2, T = 173 (2) K, m = 0.11 mm–1, Dcalc = 1.438 g/cm3, Rint = 0.028, Rsigma = 0.073. The oxamic hydrazide moiety of the molecule is slightly twisted as reflected by the torsion angles values of 177.2 (2)° [N1–N2–C9–C10], –171.3 (3)° [N2–C9–C10–N3], –4.6 (4)° [O2–C9–N2–N1] and 8.4 (4)° [O3–C10–C9–N2]. The intramolecular hydrogen bond O1(phenol)–H1•••N1(hydrazide) which close in S (6) ring stabilized the conformation. The intermolecular hydrogen bonds, C3–H3•••O1i(phenol) (i: −x+1, −y, −z+1), N3(amide)–H3A•••O3ii(amide) (ii: −x+1, −y+2, −z) and N3(amide)–H3B•••O2iii(hydrazide) (iii: −x+1, −y+1, −z) lead to the formation of sheets parallel to ac plane. Compounds (I) and (II) showed antioxidant activities less than 10% inhibition of DPPH.},
     year = {2021}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Synthesis of Schiff Bases Compounds from Oxamic Hydrazide: Spectroscopic Characterization, X–ray Diffraction Structure and Antioxidant Activity Study
    AU  - Fatou Faye
    AU  - Amadou Guèye
    AU  - Papa Samba Camara
    AU  - Aïssatou Alioune Gaye
    AU  - Farba Bouyagui Tamboura
    AU  - Nathalie Gruber
    AU  - Mohamed Gaye
    Y1  - 2021/01/22
    PY  - 2021
    N1  - https://doi.org/10.11648/j.ajac.20210901.12
    DO  - 10.11648/j.ajac.20210901.12
    T2  - American Journal of Applied Chemistry
    JF  - American Journal of Applied Chemistry
    JO  - American Journal of Applied Chemistry
    SP  - 6
    EP  - 12
    PB  - Science Publishing Group
    SN  - 2330-8745
    UR  - https://doi.org/10.11648/j.ajac.20210901.12
    AB  - The compounds (E)–2–amino–N'–(1–(2–hydroxyphenyl)ethylidene)–2–oxoacetohydrazide (I) and (E)–N'–(2–hydroxy–3–methoxybenzylidene)–2–amino–2–oxoacetohydrazide (II) were synthetized by the 1:1 ratio condensation reaction of oxamic hydrazide and 2–hydroxyacetophenone or o–vanillin respectively. The two compounds were characterized by physico–chemical analyses, elemental analysis, FTIR, 1H and 13C NMR spectroscopies techniques. The structure of the compound (I) was determined by single–crystal X–ray diffraction study. The compound (I) (C10H11N3O3) crystallises in the triclinic space group P–1 with the following unit cell parameters: a = 7.0399 (5) Å, b = 8.6252 (8) Å, c = 9.5474 (9) Å, a = 81.730 (3)°, b = 72.738 (3)°, g = 67.450 (3)°, V = 510.99 (8) Å3, Z = 2, T = 173 (2) K, m = 0.11 mm–1, Dcalc = 1.438 g/cm3, Rint = 0.028, Rsigma = 0.073. The oxamic hydrazide moiety of the molecule is slightly twisted as reflected by the torsion angles values of 177.2 (2)° [N1–N2–C9–C10], –171.3 (3)° [N2–C9–C10–N3], –4.6 (4)° [O2–C9–N2–N1] and 8.4 (4)° [O3–C10–C9–N2]. The intramolecular hydrogen bond O1(phenol)–H1•••N1(hydrazide) which close in S (6) ring stabilized the conformation. The intermolecular hydrogen bonds, C3–H3•••O1i(phenol) (i: −x+1, −y, −z+1), N3(amide)–H3A•••O3ii(amide) (ii: −x+1, −y+2, −z) and N3(amide)–H3B•••O2iii(hydrazide) (iii: −x+1, −y+1, −z) lead to the formation of sheets parallel to ac plane. Compounds (I) and (II) showed antioxidant activities less than 10% inhibition of DPPH.
    VL  - 9
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Chemistry, University Cheikh Anta Diop, Dakar, Senegal

  • Department of Chemistry, University Cheikh Anta Diop, Dakar, Senegal

  • Department of Chemistry, University Alioune Diop, Bambey, Senegal

  • Department of Chemistry, University Alioune Diop, Bambey, Senegal

  • Institut Le Bel, University of Strasbourg, Strasbourg, France

  • Department of Chemistry, University Cheikh Anta Diop, Dakar, Senegal

  • Sections