American Journal of Biomedical and Life Sciences

| Peer-Reviewed |

Stem Cells Take Part in Regulation of Prooxidant Activity and Immunity at Liver Fibrosis

Received: 13 October 2014    Accepted: 20 November 2014    Published: 26 November 2014
Views:       Downloads:

Share This Article

Abstract

It has been explored the possibility of correction of prooxidant-antioxidant parameters at rats with experimental liver fibrosis and immunological status of these animals using xenogeneic embryonic stem cells. It is shown that the threefold sequential administration of copper sulfate in dose 1 mg / 100 g of body weight, which amounted to 30% of the lethal dose in 48 hour intervals between administrations induced liver fibrosis in 24 hours after the last administration to 3 month animals. It was found that the development of fibrosis, was accompanied 50 per cent increase in TBA-active products in the mitochondria and 25% of the increase in the microsomes of liver cells. Content of Ig A, IgM, circulating immune complexes (CIC) and the average molecular weight peptides was increased to 2-3 times in the same time. Introduction of xenogenic embryonic stem cells in animals with experimental fibrosis accompanied by decrease in the amount of TBA-active products to almost intact control. It coincided with the 60% increase in the activity of glutathione peroxidase in the mitochondria. Introduction of stem cells to experimental animals provide a normalization of the content of Ig A, Ig M, the CiC and the average molecular weight of the peptides.

DOI 10.11648/j.ajbls.s.2014020601.12
Published in American Journal of Biomedical and Life Sciences (Volume 2, Issue 6-1, December 2014)

This article belongs to the Special Issue Mechanisms of Protection Against Oxidative Stress

Page(s) 5-12
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Embryonic Stem Cells, Fibrosis, Prooxidant-Antioxidant System, Immune Parameters

References
[1] Choi J., Corder N.L., Koduru B. and Wang Y. (2014) Oxidative stress and hepatic Nox proteins in chronic hepatitis C and hepatocellular carcinoma. Free Radic. Bio.l Med, 72, 267–84.
[2] Ma B., Meng X., Wang J., Sun J., Ren X., Qin M., Sun J., Sun G. and Sun X. (2014) Notoginsenoside R1 attenuates amyloid-β-induced damage in neurons by inhibiting reactive oxygen species and modulating MAPK activation. Int. Immunopharmacol, 22, 151–159.
[3] Hseu Y.C. et al. (2014) Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: a possible role in atherosclerosis. Toxico.l Appl. Pharmacol, 274, 249–262.
[4] Rottenberg H. (2014) Exceptional longevity and exceptionally high metabolic rates in anthropoid primates are linked to a major modification of the ubiquinone reduction site of cytochrome b. J. Bioenerg. Biomembr, 46, 435–445.
[5] Rottenberg H. (2007) Exceptional longevity in songbirds is associated with high rates of evolution of cytochrome b, suggesting selection for reduced generation of free radicals. J Exp Biol, 210, 2170–2180.
[6] Andziak B. et al. (2006) High oxidative damage levels in the longest-living rodent, the naked mole-rat. Aging Cell, 5, 463–471.
[7] Cardoso A,R., Kakimoto P.A. and Kowaltowski A.J. (2013) Diet-sensitive sources of reactive oxygen species in liver mitochondria: role of very long chain acyl-CoA dehydrogenases. PLoS One, 7, e77088.
[8] Hagopian K. et al. (2011) Caloric restriction influences hydrogen peroxide generation in mitochondrial sub-populations from mouse liver. J. Bioenerg. Biomembr, 43, 227–236.
[9] Ramírez-Vélez R. et al. (2013) Effect of exercise training on eNOS expression, NO production and oxygen metabolism in human placenta. PLoS One, 14, e80225.
[10] Guedouari H. et al. (2014) Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Biochim Biophys Acta, 1842, 1855–1869.
[11] Ayala A., Muñoz M.F. and Argüelles S. (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell Longev, 2014:360438.
[12] Liu Y., Long J. and Liu J. (2014) Mitochondrial free radical theory of aging: Who moved my premise? Geriatr. Gerontol. Int,18. doi: 10.1111/ggi.12296. [Epub ahead of print].
[13] Lapointe J. and Hekimi S. (2010) When a theory of aging ages badly. Cell Mol. Life Sci, 67, 1–8.
[14] Hekimi S., Lapointe J. and Wen Y. (2011) Taking a "good" look at free radicals in the aging process. Trends Cell Bio., 21, 569–576.
[15] Sanz A. and Stefanatos R.K. (2008) The mitochondrial free radical theory of aging: a critical view. , Curr. Aging Sci, 1, 10–21.
[16] Barja G. (2014) The mitochondrial free radical theory of aging. Prog. Mol. Biol. Transl. Sci, 127, 1–27.
[17] Bozhkov A.I. et al. (2010) Appearance of the imprinting effect on the specific pattern of intracellular distribution of copper ions in the liver after exposure to high concentrations of copper sulfate. Biomeditsinskaya khimiya, 56, 195–208. (in Russian).
[18] Bozhkov A. I., Sidorov V. I., Kurguzova N. I.and Dlubovskaya V. L. (2014) Metabolic memory enhances hormesis effect to the copper ions in age-depended manner. Uspekhy gerontologii, 27, 72–80. (in Russian).
[19] Lopes R.A. et al. (2014) Testosterone induces apoptosis in vascular smooth muscle cells via extrinsic apoptotic pathway with mitochondria-generated reactive oxygen species involvement. Am. J. Physiol. Heart Circ. Physiol., 306, 1485–1494.
[20] Zhang H.M. and Zhang Y. (2014) Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res, 57, 131–146.
[21] Liu Q. et al. (2013) Polymorphism of rs1836882 in NOX4 gene modifies associations between dietary caloric intake and ROS levels in peripheral blood mononuclear cells. PLoS One, 12, e85660.
[22] de Paula A Sousa A. et al. (2014) Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis. Clin. Sci. (Lond), 128, 111–120.
[23] Capitelli C.S. et al. (2014) Opposite effects of bone marrow-derived cells transplantation in MPTP-rat model of Parkinson's disease: a comparison study of mononuclear and mesenchymal stem cells. Int J Med Sci, 11, 1049–1064.
[24] Liu X. et al. (2014) Transplantation of SIRT1-engineered aged mesenchymal stem cells improves cardiac function in a rat myocardial infarction model. J. Heart Lung Transplant 33, 1083–1092.
[25] Peng S.Y. (2014) Therapeutic potential of amniotic-fluid-derived stem cells on liver fibrosis model in mice. Taiwan J. Obstet. Gyneco, 53, 151–157.
[26] Persky E.E., Nikitina N.A., Naglov A.V.and J.G. Kot (2006) Age features of induction and synthesis of intensity of certain processing steps of collagen in the connective tissue under the influence of mechanical loading. Biologicheskii vestnik, 10, 126–129. (in Russian).
[27] Kamath S.A. and Narayan K.A. (1972) Interaction of Ca 2+ with endoplasmic reticulum of rat liver: a standardized procedure for the isolation of rat liver microsomes. Anal. Biochem, 48, 53–61.
[28] Ohkawa H., Ohishi N. and Yagi K. (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem, 95, 351–358.
[29] Paglia D.E. and Valentine W.N. (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 70, 158–169.
[30] Younes M., Schlichting R. and Siegers C.P. (1980) Glutathione S-transferase activities in rat liver: effect of some factors influencing the metabolism of xenobiotics. Pharmacol. Res. Commun, 12, 115–129.
[31] Khaitov R.М., Pinegin B.V. and Yarilin А.А. (2009) Manual of Clinical Immunology. Diagnosis of diseases of the immune system: a guide for physicians. Moskow: GEOTAR Media, 352 s. (in Russian).
[32] Khan H.Y. et al. (2014) Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: a mechanism for cancer chemopreventive action. Mol. Nutr. Food Res., 58, 437-446.
[33] Sornchuer P. et al. (2014) Copper chloride induces antioxidant gene expression but reduces ability to mediate H2O2 toxicity in Xanthomonas campestris. Microbiology. 160 (Pt 2), 458–466.
[34] Arain S.A. et al. (2014) Estimation of copper and iron burden in biological samples of various stages of hepatitis C and liver cirrhosis patients. Biol. Trace Elem. Res., 160, 197–205.
[35] Casey C.A. Tuma DJ., McVicker B.L. (2014) Sy39-2 chronic ethanol consumption: its effects on liver inflammation. Alcohol Alcohol. 49, Suppl 1, i 33.
[36] Roychowdhury S., Chiang D.J., McMullen M.R. and Nagy L.E. (2014) Moderate, chronic ethanol feeding exacerbates carbon-tetrachloride-induced hepatic fibrosis via hepatocyte-specific hypoxia inducible factor 1α. Pharmacol. Res. Perspect, 2, e00061.
[37] Chrostek L, Panasiuk A. (2014) Liver fibrosis markers in alcoholic liver disease. World J. Gastroenterol, 20, 8018–1823.
Author Information
  • Biology Research Institute of V. N. Karazin Kharkov National University, Kharkov, Ukraine

  • State Institution “Institute of General and Urgent Surgery NAMS of Ukraine”, Kharkov, Ukraine

  • Biology Research Institute of V. N. Karazin Kharkov National University, Kharkov, Ukraine

  • State Institution “Institute of Children and Adolescent Health NAMS of Ukraine”, Kharkov, Ukraine

  • State Institution “Institute of General and Urgent Surgery NAMS of Ukraine”, Kharkov, Ukraine

  • Biology Research Institute of V. N. Karazin Kharkov National University, Kharkov, Ukraine

  • Biology Research Institute of V. N. Karazin Kharkov National University, Kharkov, Ukraine

  • Biology Research Institute of V. N. Karazin Kharkov National University, Kharkov, Ukraine

Cite This Article
  • APA Style

    Anatoliy Ivanovich Bozhkov, Elena Mikhajlovna Klimova, Yuriy Viktorovich Nikitchenko, Vadim Vyacheslavovich Davydov, Oxana Vladimirovna Zvyagintseva, et al. (2014). Stem Cells Take Part in Regulation of Prooxidant Activity and Immunity at Liver Fibrosis. American Journal of Biomedical and Life Sciences, 2(6-1), 5-12. https://doi.org/10.11648/j.ajbls.s.2014020601.12

    Copy | Download

    ACS Style

    Anatoliy Ivanovich Bozhkov; Elena Mikhajlovna Klimova; Yuriy Viktorovich Nikitchenko; Vadim Vyacheslavovich Davydov; Oxana Vladimirovna Zvyagintseva, et al. Stem Cells Take Part in Regulation of Prooxidant Activity and Immunity at Liver Fibrosis. Am. J. Biomed. Life Sci. 2014, 2(6-1), 5-12. doi: 10.11648/j.ajbls.s.2014020601.12

    Copy | Download

    AMA Style

    Anatoliy Ivanovich Bozhkov, Elena Mikhajlovna Klimova, Yuriy Viktorovich Nikitchenko, Vadim Vyacheslavovich Davydov, Oxana Vladimirovna Zvyagintseva, et al. Stem Cells Take Part in Regulation of Prooxidant Activity and Immunity at Liver Fibrosis. Am J Biomed Life Sci. 2014;2(6-1):5-12. doi: 10.11648/j.ajbls.s.2014020601.12

    Copy | Download

  • @article{10.11648/j.ajbls.s.2014020601.12,
      author = {Anatoliy Ivanovich Bozhkov and Elena Mikhajlovna Klimova and Yuriy Viktorovich Nikitchenko and Vadim Vyacheslavovich Davydov and Oxana Vladimirovna Zvyagintseva and Natalia Igorevna Kurguzova and Vadim Ivanovich Sidorov and Alexandr Vladimirovich Naglov},
      title = {Stem Cells Take Part in Regulation of Prooxidant Activity and Immunity at Liver Fibrosis},
      journal = {American Journal of Biomedical and Life Sciences},
      volume = {2},
      number = {6-1},
      pages = {5-12},
      doi = {10.11648/j.ajbls.s.2014020601.12},
      url = {https://doi.org/10.11648/j.ajbls.s.2014020601.12},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajbls.s.2014020601.12},
      abstract = {It has been explored the possibility of correction of prooxidant-antioxidant parameters at rats with experimental liver fibrosis and immunological status of these animals using xenogeneic embryonic stem cells. It is shown that the threefold sequential administration of copper sulfate in dose 1 mg / 100 g of body weight, which amounted to 30% of the lethal dose in 48 hour intervals between administrations induced liver fibrosis in 24 hours after the last administration to 3 month animals. It was found that the development of fibrosis, was accompanied 50 per cent increase in TBA-active products in the mitochondria and 25% of the increase in the microsomes of liver cells. Content of Ig A, IgM, circulating immune complexes (CIC) and the average molecular weight peptides was increased to 2-3 times in the same time. Introduction of xenogenic embryonic stem cells in animals with experimental fibrosis accompanied by decrease in the amount of TBA-active products to almost intact control. It coincided with the 60% increase in the activity of glutathione peroxidase in the mitochondria. Introduction of stem cells to experimental animals provide a normalization of the content of Ig A, Ig M, the CiC and the average molecular weight of the peptides.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Stem Cells Take Part in Regulation of Prooxidant Activity and Immunity at Liver Fibrosis
    AU  - Anatoliy Ivanovich Bozhkov
    AU  - Elena Mikhajlovna Klimova
    AU  - Yuriy Viktorovich Nikitchenko
    AU  - Vadim Vyacheslavovich Davydov
    AU  - Oxana Vladimirovna Zvyagintseva
    AU  - Natalia Igorevna Kurguzova
    AU  - Vadim Ivanovich Sidorov
    AU  - Alexandr Vladimirovich Naglov
    Y1  - 2014/11/26
    PY  - 2014
    N1  - https://doi.org/10.11648/j.ajbls.s.2014020601.12
    DO  - 10.11648/j.ajbls.s.2014020601.12
    T2  - American Journal of Biomedical and Life Sciences
    JF  - American Journal of Biomedical and Life Sciences
    JO  - American Journal of Biomedical and Life Sciences
    SP  - 5
    EP  - 12
    PB  - Science Publishing Group
    SN  - 2330-880X
    UR  - https://doi.org/10.11648/j.ajbls.s.2014020601.12
    AB  - It has been explored the possibility of correction of prooxidant-antioxidant parameters at rats with experimental liver fibrosis and immunological status of these animals using xenogeneic embryonic stem cells. It is shown that the threefold sequential administration of copper sulfate in dose 1 mg / 100 g of body weight, which amounted to 30% of the lethal dose in 48 hour intervals between administrations induced liver fibrosis in 24 hours after the last administration to 3 month animals. It was found that the development of fibrosis, was accompanied 50 per cent increase in TBA-active products in the mitochondria and 25% of the increase in the microsomes of liver cells. Content of Ig A, IgM, circulating immune complexes (CIC) and the average molecular weight peptides was increased to 2-3 times in the same time. Introduction of xenogenic embryonic stem cells in animals with experimental fibrosis accompanied by decrease in the amount of TBA-active products to almost intact control. It coincided with the 60% increase in the activity of glutathione peroxidase in the mitochondria. Introduction of stem cells to experimental animals provide a normalization of the content of Ig A, Ig M, the CiC and the average molecular weight of the peptides.
    VL  - 2
    IS  - 6-1
    ER  - 

    Copy | Download

  • Sections