American Journal of Physics and Applications

| Peer-Reviewed |

Intermolecular Hydrogen Bond in Acetic Acid Solutions. Raman Spectra and ab initio Calculations

Received: 07 December 2018    Accepted: 20 December 2018    Published: 15 January 2019
Views:       Downloads:

Share This Article

Abstract

C=O vibrational bands of various aggregated formations of pure acetic acid in the Raman spectra have different values of the depolarization ratio. Ab initio calculations using the Gaussian 98 W program in the Hartree-Fock approximation with the basic set of Gaussian functions RHF 6-31G++(d, p) show that this is how it should be. Thus, the formation of aggregates from molecules leads not only to a change in the dipole moment of the molecules, but also to a change in the bond polarizability tensor. Calculations according to this program showed that one of the hydrogen atoms of CH3 group of acetonitrile can participate in the intermolecular hydrogen bond. This can lead to the formation of closed acetonitrile-acetic acid dimers. However, a comparison of the calculated and experimental data shows that in the case of acid-acetonitrile molecules, the H-bond is formed in the direction of the elongation –О-Н…N of acetonitrile molecules. The activity of one of the hydrogen atoms of the CH3 group of acetonitrile leads to the formation of closed dimeric aggregates in pure acetonitrile with a shift of the СN band of acetonitrile towards lower frequencies. The low-frequency asymmetry of СN acetonitrile band in the Raman spectra is associated with the presence of such aggregates in liquid acetonitrile.

DOI 10.11648/j.ajpa.20180606.15
Published in American Journal of Physics and Applications (Volume 6, Issue 6, November 2018)
Page(s) 169-174
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Raman Spectra, Ab Initio Calculation, H-Bond, Aggregated Formations, Carboxylic Acids

References
[1] J. Pimentel, O. Mac-Klelan. Hydrogen bond // M .: Mir, 1964. 462 S.
[2] F. H. Tukhvatullin, U. N. Tashkenbaev, A. Jumabaev, H. Hushvaktov, A. Absanov. Structure of molecular aggregates in liquids and their manifestation in spectra of raman scattering. Monograph, Germany, LAMBERT Academic publishing, 2015 year, P. -252.
[3] I. V. Gerasimov, A. I. Kulbida, K. G. Tokhadze, V. M. Schreiber // ZHPS. 1980. T.32. Issue 6, p. 1066.
[4] V. Krishnakumar, R. Mathammal, S. Muthunatesan // Spectrochimica Acta Part A 70. 2008. PP. 210–216.
[5] A. Olbert-Majkut, J. Ahokas, J. Lundell, M. Pettersson // J. Raman Spectrosc. 2011, Vol.42, PP.1670–1681.
[6] F. Wan, L. Du, W. Chen, P. Wang, J. Wang, H. Shi // Energies 2017. Vol.10, P. 967.
[7] L. Du, W. Chen, Z. Gu, J. Zou, F. Wan, P. Wang, C. Pan // IEEE International Conference on High Voltage Engineering and Application (ICHVE) 2016. 19-22 Sept. Chengdu, China.
[8] G. V. Gusakova, G. S. Denisov, A. L. Smolyansky \\ ZHPS. 1971, Vol.14, Vol.5, S.860-866.
[9] T. Nakabayashi, K. Kosugi, N. Nishi // J. Phys. Chem. A 1999, Vol.103, РР.8595-8603.
[10] D. R. Allan, S. J. Clark // Phys. Rev. Letters. 1999, V82, №17, P.3464-3467.
[11] F. Kh. Tukhvatullin, U. N. Tashkenbaev, A. Jumabaev, G. Murodov, Kh. Hushvaktov, A. Absanov // Journal Chem. Phys. 2003, No. 6, P.205-210.
[12] А. Jumabaev, U. N. Tashkenbaev, Kh. Hushvaktov, G. Muradov, А. А. Absanov, G. Sharifov, B. Amrullaeva // VII International Conference on Physical Electronics, IPEC-7. Tashkent. 2018. P.26.
[13] A. K. Atakhodzhaev, F. Tukhvatullin, G. Muradov et al. // Optics and Spectroscopy. 1996, T.80, No. 2, p. 208.
[14] F. Tukhvatullin, A. Jumabaev, U. N. Tashkenbaev, Kh. Hushvaktov, A. Absanov // O. ph. ph . d. 2004, Vol. 6, No. 3, pp. 195-202.
[15] U. N. Tashkenbaev // Uzb. Phys. Journ. 1998, No. 6, P. 60-65.
[16] J. Wu // Phys. Chem. Chem. Phys., 2014, Vol.16, PP.22458-22461.
[17] T. Nakabayashi, N. Nishi // J. Annual Review, 2001. P.61-62.
[18] T. Nakabayashi, N. Nishi // J. Annual Review, 2000. P.66-68.
[19] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.3, Gaussian, Inc., Pittsburgh PA, (1998).
[20] L. M. Sverdlov, M. A. Kovner, E. P. Kraynov. Oscillatory spectra of polyatomic molecules // Izd. M.: “Science” 1970, P.560.
[21] P. Pulay, G. Fogarasi, G. Pongar, I. E. Boggs and A. Varga // J. Am. Chem. Soc. 1983, 105 (24), P.7037.
[22] M. A. Ablaeva, G. M. Zhidomirov et al. // Zhurn. Struct. Chemistry 1992, T.33 (5), P.44-54.
[23] B. P. Asthana, V. Deckert, M. K. Shukla, W. Kiefer // J. Chem. Phys. Letters. 2000; 326: 123-128.
[24] Doo-Sik Ahn and Sungyul Lee // Bull. Korean Chem. Soc. 2003; 24 (5): 545-546.
Author Information
  • Department of Physics, Samarkand State University, Samarkand, Uzbekistan

  • Department of Physics, Samarkand State University, Samarkand, Uzbekistan

  • Department of Physics, Kiev National University, Kiev, Ukraine

  • Department of Physics, Samarkand State University, Samarkand, Uzbekistan

  • Department of Physics, Samarkand State University, Samarkand, Uzbekistan

  • Department of Physics, Samarkand State University, Samarkand, Uzbekistan

  • Department of Physics, Samarkand State University, Samarkand, Uzbekistan

Cite This Article
  • APA Style

    Khakim Khushvaktov, Abduvakhid Jumabaev, Valeriy Pogorelov, Ulugbek Tashkenbaev, Akhmad Absanov, et al. (2019). Intermolecular Hydrogen Bond in Acetic Acid Solutions. Raman Spectra and ab initio Calculations. American Journal of Physics and Applications, 6(6), 169-174. https://doi.org/10.11648/j.ajpa.20180606.15

    Copy | Download

    ACS Style

    Khakim Khushvaktov; Abduvakhid Jumabaev; Valeriy Pogorelov; Ulugbek Tashkenbaev; Akhmad Absanov, et al. Intermolecular Hydrogen Bond in Acetic Acid Solutions. Raman Spectra and ab initio Calculations. Am. J. Phys. Appl. 2019, 6(6), 169-174. doi: 10.11648/j.ajpa.20180606.15

    Copy | Download

    AMA Style

    Khakim Khushvaktov, Abduvakhid Jumabaev, Valeriy Pogorelov, Ulugbek Tashkenbaev, Akhmad Absanov, et al. Intermolecular Hydrogen Bond in Acetic Acid Solutions. Raman Spectra and ab initio Calculations. Am J Phys Appl. 2019;6(6):169-174. doi: 10.11648/j.ajpa.20180606.15

    Copy | Download

  • @article{10.11648/j.ajpa.20180606.15,
      author = {Khakim Khushvaktov and Abduvakhid Jumabaev and Valeriy Pogorelov and Ulugbek Tashkenbaev and Akhmad Absanov and Gayrat Sharifov and Barno Amrullaeva},
      title = {Intermolecular Hydrogen Bond in Acetic Acid Solutions. Raman Spectra and ab initio Calculations},
      journal = {American Journal of Physics and Applications},
      volume = {6},
      number = {6},
      pages = {169-174},
      doi = {10.11648/j.ajpa.20180606.15},
      url = {https://doi.org/10.11648/j.ajpa.20180606.15},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajpa.20180606.15},
      abstract = {C=O vibrational bands of various aggregated formations of pure acetic acid in the Raman spectra have different values of the depolarization ratio. Ab initio calculations using the Gaussian 98 W program in the Hartree-Fock approximation with the basic set of Gaussian functions RHF 6-31G++(d, p) show that this is how it should be. Thus, the formation of aggregates from molecules leads not only to a change in the dipole moment of the molecules, but also to a change in the bond polarizability tensor. Calculations according to this program showed that one of the hydrogen atoms of CH3 group of acetonitrile can participate in the intermolecular hydrogen bond. This can lead to the formation of closed acetonitrile-acetic acid dimers. However, a comparison of the calculated and experimental data shows that in the case of acid-acetonitrile molecules, the H-bond is formed in the direction of the elongation –О-Н…N of acetonitrile molecules. The activity of one of the hydrogen atoms of the CH3 group of acetonitrile leads to the formation of closed dimeric aggregates in pure acetonitrile with a shift of the СN band of acetonitrile towards lower frequencies. The low-frequency asymmetry of СN acetonitrile band in the Raman spectra is associated with the presence of such aggregates in liquid acetonitrile.},
     year = {2019}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Intermolecular Hydrogen Bond in Acetic Acid Solutions. Raman Spectra and ab initio Calculations
    AU  - Khakim Khushvaktov
    AU  - Abduvakhid Jumabaev
    AU  - Valeriy Pogorelov
    AU  - Ulugbek Tashkenbaev
    AU  - Akhmad Absanov
    AU  - Gayrat Sharifov
    AU  - Barno Amrullaeva
    Y1  - 2019/01/15
    PY  - 2019
    N1  - https://doi.org/10.11648/j.ajpa.20180606.15
    DO  - 10.11648/j.ajpa.20180606.15
    T2  - American Journal of Physics and Applications
    JF  - American Journal of Physics and Applications
    JO  - American Journal of Physics and Applications
    SP  - 169
    EP  - 174
    PB  - Science Publishing Group
    SN  - 2330-4308
    UR  - https://doi.org/10.11648/j.ajpa.20180606.15
    AB  - C=O vibrational bands of various aggregated formations of pure acetic acid in the Raman spectra have different values of the depolarization ratio. Ab initio calculations using the Gaussian 98 W program in the Hartree-Fock approximation with the basic set of Gaussian functions RHF 6-31G++(d, p) show that this is how it should be. Thus, the formation of aggregates from molecules leads not only to a change in the dipole moment of the molecules, but also to a change in the bond polarizability tensor. Calculations according to this program showed that one of the hydrogen atoms of CH3 group of acetonitrile can participate in the intermolecular hydrogen bond. This can lead to the formation of closed acetonitrile-acetic acid dimers. However, a comparison of the calculated and experimental data shows that in the case of acid-acetonitrile molecules, the H-bond is formed in the direction of the elongation –О-Н…N of acetonitrile molecules. The activity of one of the hydrogen atoms of the CH3 group of acetonitrile leads to the formation of closed dimeric aggregates in pure acetonitrile with a shift of the СN band of acetonitrile towards lower frequencies. The low-frequency asymmetry of СN acetonitrile band in the Raman spectra is associated with the presence of such aggregates in liquid acetonitrile.
    VL  - 6
    IS  - 6
    ER  - 

    Copy | Download

  • Sections