Average Current Through a Single-electron Transistor Under Fluctuations of an Observer’s Frame of Reference
American Journal of Physics and Applications
Volume 7, Issue 5, September 2019, Pages: 118-124
Received: Aug. 13, 2019; Accepted: Aug. 28, 2019; Published: Sep. 16, 2019
Views 38      Downloads 25
Author
Yun-Sok Shin, Sejong Academy of Science and Arts, Sejong, Republic of Korea
Article Tools
Follow on us
Abstract
The average current through a single-electron transistor (SET) under fluctuations of an observer’s frame of reference (OFR) is reported. To date, the average current through a SET has been studied under the assumption that an OFR remains constant throughout the performance of measurements of the current; thus, it remains an unsolved problem as to what is measured of the current when the OFR is assumed to fluctuate. In this paper, a SET comprising a source, drain, and single channel is considered, where an OFR is assumed to be matched to the electrochemical potential energy of the drain of the SET. The average current through the SET for two types of OFR fluctuation is formulated: periodic-square-wave fluctuation and periodic-sawtooth-wave fluctuation, in time representations. Under these types of fluctuation, the average current exhibits a zero-bias Coulomb peak—the amplitude of which gradually increases with the amplitude of the fluctuation type divided by temperature. The amplitude of the zero-bias Coulomb peak is greater in the case of periodic-square-wave fluctuations. Therefore, the amplitude of the zero-bias Coulomb peak together with a varying of both the energy of the channel and the temperature has the potential to reveal the distribution of fluctuations of an OFR.
Keywords
Single-electron Transistor, Quantum Dot, Coulomb Peak, Coulomb Blockade, Observer Effect, Fluctuating Frame of Reference
To cite this article
Yun-Sok Shin, Average Current Through a Single-electron Transistor Under Fluctuations of an Observer’s Frame of Reference, American Journal of Physics and Applications. Vol. 7, No. 5, 2019, pp. 118-124. doi: 10.11648/j.ajpa.20190705.14
Copyright
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
J. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev., vol. 32, pp. 97-109, 1928.
[2]
H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev., vol. 32, pp. 110-113, 1928.
[3]
W. Schottky, “Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern,” Ann. Phys. (Leipzig), vol. 362, pp. 541-567, 1918.
[4]
C. W. J. Beenakker and H. van Houten, “Semiclassical theory of shot noise and its suppression in a conductor with deterministic scattering,” Phys. Rev. B, vol. 43, pp. 12066-12069, 1991.
[5]
A. H. Steinbach, J. M. Martinis, and M. H. Devoret, “Observation of hot-electron shot noise in a metallic resistor,” Phys. Rev. Lett., vol. 76, pp. 3806-3809, 1996.
[6]
Ya. M. Blanter and M. Büttiker, “Shot noise in mesoscopic conductors,” Phys. Rep., vol. 336, pp. 1-166, 2000.
[7]
D. V. Averin and K. K. Likharev, “Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions,” J. Low Temp. Phys. Rep., vol. 62, pp. 345-373, 1986.
[8]
P. L. McEuen, E. B. Foxman, J. M. Kinaret, U. Meirav, M. A. Kastner, N. S. Wingreen, and S. J. Wind, “Self-consistent addition spectrum of a Coulomb island in the quantum Hall regime,” Phys. Rev. B, vol. 45, pp. 11419-11422, 1992.
[9]
E. Leobandung, L. Guo, Y. Wang, and S. Y. Chou, “Observation of quantum effects and Coulomb blockade in silicon quantum‐dot transistors at temperatures over 100 K,” Appl. Phys. Lett., vol. 67, pp. 938-940, 1995.
[10]
S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, “Shell filling and spin effects in a few electron quantum dot,” Phys. Rev. Lett., vol. 77, pp. 3613-3616, 1996.
[11]
L. P. Kouwenhoven, T. H. Oosterkamp, M. W. S. Danoesastro, M. Eto, D. G. Austing, T. Honda, and S. Tarucha, “Excitation spectra of circular, few-electron quantum dots,” Science, vol. 278, pp. 1788-1792, 1997.
[12]
L. Gaudreau, A. Kam, G. Granger, S. A. Studenikin, P. Zawadzki, and A. S. Sachrajda, “A tunable few electron triple quantum dot,” Appl. Phys. Lett., vol. 95, pp. 193101, 2009.
[13]
H. Flentje, B. Bertrand, P.-A. Mortemousque, V. Thiney, A. Ludwig, A. D. Wieck, C. Bäuerle, and T. Meunier, “A linear triple quantum dot system in isolated configuration,” Appl. Phys. Lett., vol. 110, pp. 233101, 2017.
[14]
A. Noiri, K. Kawasaki, T. Otsuka, T. Nakajima, J. Yoneda, S. Amaha, M. R. Delbecq, K. Takeda, G. Allison, A. Ludwig, A. D. Wieck, and S. Tarucha, “A triangular triple quantum dot with tunable tunnel couplings,” Sem. Sci. Tech., vol. 32, pp. 084004, 2017.
[15]
C. Hong, G. Yoo, J. Park, M.-K. Cho, Y. Chung, H.-S. Sim, D. Kim, H. Choi, V. Umansky, and D. Mahalu, “Attractive Coulomb interactions in a triple quantum dot,” Phys. Rev. B, vol. 97, pp. 241115, 2018.
[16]
K. Ono, D. G. Austing, Y. Tokura, and S. Tarucha, “Current rectification by Pauli exclusion in a weakly coupled double quantum dot system,” Science, vol. 297, pp. 1313-1317, 2002.
[17]
H. W. Liu, T. Fujisawa, Y. Ono, H. Inokawa, A. Fujiwara, K. Takashina, and Y. Hirayama, “Pauli-spin-blockade transport through a silicon double quantum dot,” Phys. Rev. B, vol. 77, pp. 073310, 2008.
[18]
D. Kotekar-Patil. A. Corna, R. Maurand, A. Crippa, A. Orlov, S. Barraud, L. Hutin, M. Vinet, X. Jehl, S. De Dranceschi, and M. Sanquer, “Pauli spin blockade in CMOS double quantum dot devices,” Phys. Stat. Sol. (b), vol. 254, pp. 201600581, 2016.
[19]
D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A, vol. 57, pp. 120-126, 1998.
[20]
L. M. K. Vandersypen, J. M. Elzerman, R. N. Schouten, L. H. Willems van Beveren, R. Hanson, and L. P. Kouwenhoven, “Real-time detection of single-electron tunneling using a quantum point contact,” Appl. Phys. Lett., vol. 85, pp. 4394-4396, 2004.
[21]
J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, “Single-shot read-out of an individual electron spin in a quantum dot,” Nature, vol. 430, pp. 431-435, 2004.
[22]
F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, “Driven coherent oscillations of a single electron spin in a quantum dot,” Nature, vol. 442, pp. 766-771, 2006.
[23]
N. Shaji, C. B. Simmons, M. Thalakulam, L. J. Klein, H. Qin, H. Luo, D. E. Savage, M. G. Lagally, A. J. Rimberg, R. Joynt, M. Friesen, R. H. Blick, S. N. Coppersmith, and M. A. Eriksson, “Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot,” Nat. Phys., vol. 4, pp. 540-544, 2008.
[24]
M. Piore-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, and S. Tarucha, “Electrically driven single-electron spin resonance in a slanting Zeeman field,” Nat. Phys., vol. 4, pp. 776-779, 2008.
[25]
Y.-S. Shin, T. Obata, Y. Tokura, M. Piore-Ladrière, R. Brunner, T. Kubo, K. Yoshida, and S. Tarucha, “Single-spin readout in a double quantum dot including a micromagnet,” Phys. Rev. Lett., vol. 104, pp. 046802, 2010.
[26]
M. G. Borsellia, K. Eng, E. T. Croke, B. M. Maune, B. Huang, R. S. Ross, A. A. Kiselev, P. W. Deelman, I. Alvarado-Rodriguez, A. E. Schmitz, M. Sokolich, K. S. Holabird, T. M. Hazard, M. F. Gyure, and A. T. Hunter, “Pauli spin blockade in undoped Si/SiGe two-electron double quantum dots,” Appl. Phys. Lett., vol. 99, pp. 063109, 2011.
[27]
R. Brunner, Y.-S. Shin, T. Obata, M. Piore-Ladrière, T. Kubo, K. Yoshida, T. Taniyama, Y. Tokura, and S. Tarucha, “Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot,” Phys. Rev. Lett., vol. 107, pp. 146801, 2011.
[28]
L. Gaudreau, G. Granger, A. Kam, G. C. Aers, S. A. Studenikin, P. Zawadzki, M. Piore-Ladrière, Z. R. Wasilewski, and A. S. Sachrajda, “Coherent control of three-spin states in a triple quantum dot,” Nat. Phys., vol. 8, pp. 54-58, 2012.
[29]
Y.-S. Shin, “The average energy and molar specific heat at constant volume of an Einstein solid measured by an observer with fluctuating frame of reference,” Am. J. Phys. Appl., vol. 7, pp. 21-26, 2019.
[30]
S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, New York, 2005, pp. 1-11.
[31]
M. Paulsson and S. Datta, “Thermoelectric effect in molecular electronics,” Phys. Rev. B, vol. 67, pp. 241403, 2003.
[32]
S. Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, New York, 2005, pp. 30-31.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186