| Peer-Reviewed

Experimental and Theoretical Study of Parasitic Effects in InAlAs/InGaAs/InP HEMT’s

Received: 21 May 2013    Accepted:     Published: 30 June 2013
Views:       Downloads:
Abstract

A detailed study of electrically active defects present in InAlAs/InP heterostructure and InAlAs/InGaAs/InP High Electron Mobility Transistors (HEMTs) grown by metal organic chemical vapor deposition (MOCVD) is presented. Current and capacitance Deep Level Transient Spectroscopy (I-DLTS and C-DLTS) techniques are used for the identification of active electrical defects. A notable correlation between deep levels observed by I -DLTS and C-DLTS results and the contribution of parasitic effects (Kink and Hysteresis effects) on output characteristics was evidenced. A new model for Kink effect is presented on InAlAs / InGaAs / InP HEMT’s. This model uses a new polynomial dependence of sheet carrier concentration, on bias and temperature of device structure to calculate Ids – Vds characteristics. The simulation model enables us to confirm that the Kink parasitic effect in Ids – Vds characteristics is strongly correlated by trapping and detrapping mechanisms. Experimental and theoretical results obtained by the new model are in good agreement.

Published in American Journal of Physics and Applications (Volume 1, Issue 1)
DOI 10.11648/j.ajpa.20130101.14
Page(s) 18-24
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

DLTS, I-DLTS, Ids-Vds, PL, Kink Effect, HEMT

References
[1] D. Delagebeaudeuf, N. T. Linh, IEEE Trans. Electron. Dev. 1982; 29: 955-960.
[2] Hase, H. Hünkel, D. R. T. Zahn, W. Richter, J. Appl. Phys. 1994 ;76 (4): 2459.
[3] M.A. Khan, M.S. Shur, Q.C. Chen, J.N. Kuznia, Electron. Lett.1994; 30: 2175.
[4] P.B. Klein, J.A. Freitas Jr., S.C. Binari,A.E.Wickenden, Appl. Phys. Lett. 1999; 75: 4014.
[5] S.C. Binari, et al., Solid-State Electron. 1997; 41: 1549–1554.
[6] S.C. Binari, J.M. Redwing, G. Kelner, W. Kruppa, Electron. Lett. 1997; 33: 242–243.
[7] S. Trassaert, et al.,Electron. Lett.1999; 34: 1386–1388.
[8] W. Kruppa, S.C. Binari, K. Doverspike, Electron. Lett.1995; 31: 1951.
[9] Daumiller, D. Theron, C. Gaquiere, A. Vescan, R. Dietrich, A. Wieszt, H. Leier, R. Vetury, U.K. Mishra, I.P. Smorchkova, S. Keller, N.X. Nguyen, C.N. Nguyen, E. Kohn, IEEE Electron. Dev. Lett. 2001; 22: 62.
[10] D.V. Kuksenkov, H. Temkin, R. Gaska, J.W. Yang, IEEE Electron. Dev. Lett. 1998; 19: 222.
[11] S.L. Rumyantsev, N. Pala, M.S. Shur, E. Borovitskaya, A.P. Dmitriev, M.E. Levinshtein, R. Gaska, M.A. Khan, J. Yang, X. Hu, G. Simin, IEEE Trans. Electron. Dev. 2001; 48: 530.
[12] W. Kruppa, S.C. Binari, K. Doverspike, Electron. Lett.1995; 31: 1951–1952.
[13] R. Gupta, A. Kranti, S. Haldar, M. Gupta, R. S. Gupta, Microelectronic Engineering, Vol. 60, pp. 323 – 337, (2002).
[14] R. Gupta, S. K. Aggarwal, M. Gupta, R. S. Gupta, Microelectronics Journal, Vol. 37, pp. 919 – 929, (2006).
[15] Souifi, B. Georgescu, G. Brémond, M. A. Py, J. Décobert, G. Post, and G. Guillot, 11thInternalional Conference on Indium Phosphide and Related Materials, 1999: 487.
[16] J. Décobert, P. Regreny, H. Maher, M. Le Pallec, A. Falcou, M. Juhel, G. Post, Proceeding of the N-International conference IPRM’97, Hyannis, USA, 1997: 74.
[17] T. Enoki, K. Arai, A. Kohzen, Y. Ishii, IEEE Trans. Electron. Dev. 1995; 42: 1413.
[18] H. Maher, J. Décobert, G. post, Nationales Micro-Optoélectron. Chantilly (France) 1997: 172.
[19] S. M. Olsthoorn, F. A. J. M. Driessen, A. P. A. M. Eijkelenboom, and L. J. Giling, J. Appl. Phys. 1993; 73 (11): 7798.
[20] D. Vignaud, X. Wallart and F. Mollot, B. Sermage, J. Appl. phys., 1998; 84 (4): 2138.
[21] J. K. Luo and H. Thomas, S. A. Clark and R. H. Williams, J. Appl. Phys. 1993; 74 (11): 6726.
[22] S. Naritsuka, T. Noda, A. Wagai, S. Fujita, and Y. Ashizawa, Jpn. J. Appl. Phys. 1993; 32: L925.
[23] S. Naritsuka, T. Noda, A. Wagai, S. Fujita, and Y. Ashizawa, TUP6.
[24] S. Naritsuka, T. Noda, A. Wagai, S. Fujita, and Y. Ashizawa, Journal of Crystal Growth, 1993; 131: 186.
[25] J. K. Luo, H. Thomas and I. L. Morris, Electronics Letters, 1992; 28 (8): 797.
[26] S. Bouzgarrou, M. M. Ben Salem, F. Hassen, A. Kalboussi, A. Souifi, Materials Science and Engineering B, 2005; 116: 202 – 207.
[27] M. M. Ben Salem, S. Bouzgarrou, N. Sghaier, A. Kalboussi, A. Souifi, Materials Science and Engineering B, 2006; 127: 34 – 40.
[28] N. Sghaier, S. Bouzgarrou, M. M. Ben Salem, A. Kalboussi, A. Souifi, Materials Science and Engineering B, 2005; 121: 178 – 182.
[29] D. Sala, W. Kellner, T. Grave, M. Gatti, G. Meneghesso, L. Vendrame, Proceedings of ESREF’95, European Symposium on Reability and Failure Analysis, Bordereaux, France, 1995: 435 – 440.
[30] Mazzanti, G. Verzellesi, L. Vicini, C. Canali, A. Chini, G. Meneghesso , Proc EDMO, 2001: 137 – 142.
[31] T. Suemitsu, T. Enoki, Nobuyukisano, M. Tomizawa, Y. Ishii, IEEE Tans. Electron Dev. vol. 1998; 45 (12): 2390-2399.
[32] L. N. Balkov, M. Kitamura, I. L. Maksimov, Journal of Crystal Growth, Vol. 275, pp. 617 – 623, (2005).
[33] Shalimov, J. B. Misiuk, J. Kaniewski, J. Trela, W. Wierzchowski, K. Wierteska, W. Graeff, Vol401, pp. 221 – 225, (2005).
[34] G. Meneghesso, E. Zanoni, Microelectronics Reliability, 2002; 42: 685 – 708.
[35] M. H. Somerville, A. Ernest, J. A. del Alamo, IEEE Tans. Electron Dev. vol. 2000; 47 (5): 922-930.
[36] S. M. Sze, "Phisics of semiconductor devices", Wiley, New York, (1981).
[37] H. Mathieu, "Physique des semiconducteurs et des composantes électroniques, Paris (1987).
[38] Bengi, S. Altindal, S. Ozçelik, T. S. Mammadov, Physica B, Vol. 396, pp. 22 – 28, (2007).
[39] R. Gupta, S. K. Aggarwal, M. Gupta, R. S. Gupta, Solid – State Electronics, Vol. 49, pp. 167 – 174, (2005).
[40] G. A. Umana-Membreno, J. M. Dell, L. Faraone, Y. F. Wu, G. Parish and U. K. Mishra, Microelectron J 2000; 31(7): 531-536.
[41] B. Georgescu, A. Souifi, G. Post, and G. Guillot, Internalional Conference on Indium Phosphide and Related Materials, 1997: 173.
[42] W. Kruppa, and J. B. Boos. Electron.Lett. 1994; 30 (4): 368-369.
[43] Caddemi, G. Crupi and N. Donato, Solid – State Electronics, Vol. 2005; 49 (6): 928 – 934.
Cite This Article
  • APA Style

    S. Bouzgarrou, M. M. Ben Salem, A. Kalboussi, A. Souifi. (2013). Experimental and Theoretical Study of Parasitic Effects in InAlAs/InGaAs/InP HEMT’s. American Journal of Physics and Applications, 1(1), 18-24. https://doi.org/10.11648/j.ajpa.20130101.14

    Copy | Download

    ACS Style

    S. Bouzgarrou; M. M. Ben Salem; A. Kalboussi; A. Souifi. Experimental and Theoretical Study of Parasitic Effects in InAlAs/InGaAs/InP HEMT’s. Am. J. Phys. Appl. 2013, 1(1), 18-24. doi: 10.11648/j.ajpa.20130101.14

    Copy | Download

    AMA Style

    S. Bouzgarrou, M. M. Ben Salem, A. Kalboussi, A. Souifi. Experimental and Theoretical Study of Parasitic Effects in InAlAs/InGaAs/InP HEMT’s. Am J Phys Appl. 2013;1(1):18-24. doi: 10.11648/j.ajpa.20130101.14

    Copy | Download

  • @article{10.11648/j.ajpa.20130101.14,
      author = {S. Bouzgarrou and M. M. Ben Salem and A. Kalboussi and A. Souifi},
      title = {Experimental and Theoretical Study of Parasitic Effects in InAlAs/InGaAs/InP HEMT’s},
      journal = {American Journal of Physics and Applications},
      volume = {1},
      number = {1},
      pages = {18-24},
      doi = {10.11648/j.ajpa.20130101.14},
      url = {https://doi.org/10.11648/j.ajpa.20130101.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpa.20130101.14},
      abstract = {A detailed study of electrically active defects present in InAlAs/InP heterostructure and InAlAs/InGaAs/InP High Electron Mobility Transistors (HEMTs) grown by metal organic chemical vapor deposition (MOCVD) is presented. Current and capacitance Deep Level Transient Spectroscopy (I-DLTS and C-DLTS) techniques are used for the identification of active electrical defects. A notable correlation between deep levels observed by I -DLTS and C-DLTS results and the contribution of parasitic effects (Kink and Hysteresis effects) on output characteristics was evidenced. A new model for Kink effect is presented on InAlAs / InGaAs / InP HEMT’s. This model uses a new polynomial dependence of sheet carrier concentration, on bias and temperature of device structure to calculate Ids – Vds characteristics. The simulation model enables us to confirm that the Kink parasitic effect in Ids – Vds characteristics is strongly correlated by trapping and detrapping mechanisms. Experimental and theoretical results obtained by the new model are in good agreement.},
     year = {2013}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Experimental and Theoretical Study of Parasitic Effects in InAlAs/InGaAs/InP HEMT’s
    AU  - S. Bouzgarrou
    AU  - M. M. Ben Salem
    AU  - A. Kalboussi
    AU  - A. Souifi
    Y1  - 2013/06/30
    PY  - 2013
    N1  - https://doi.org/10.11648/j.ajpa.20130101.14
    DO  - 10.11648/j.ajpa.20130101.14
    T2  - American Journal of Physics and Applications
    JF  - American Journal of Physics and Applications
    JO  - American Journal of Physics and Applications
    SP  - 18
    EP  - 24
    PB  - Science Publishing Group
    SN  - 2330-4308
    UR  - https://doi.org/10.11648/j.ajpa.20130101.14
    AB  - A detailed study of electrically active defects present in InAlAs/InP heterostructure and InAlAs/InGaAs/InP High Electron Mobility Transistors (HEMTs) grown by metal organic chemical vapor deposition (MOCVD) is presented. Current and capacitance Deep Level Transient Spectroscopy (I-DLTS and C-DLTS) techniques are used for the identification of active electrical defects. A notable correlation between deep levels observed by I -DLTS and C-DLTS results and the contribution of parasitic effects (Kink and Hysteresis effects) on output characteristics was evidenced. A new model for Kink effect is presented on InAlAs / InGaAs / InP HEMT’s. This model uses a new polynomial dependence of sheet carrier concentration, on bias and temperature of device structure to calculate Ids – Vds characteristics. The simulation model enables us to confirm that the Kink parasitic effect in Ids – Vds characteristics is strongly correlated by trapping and detrapping mechanisms. Experimental and theoretical results obtained by the new model are in good agreement.
    VL  - 1
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Laboratoire de Microélectronique et Instrumentation (UR 03/13-04), Faculté des Sciences de Monastir, Avenue de l'Environnement 5000 Monastir, Tunisia

  • Laboratoire de Physique des semiconducteurs et des Composants Electroniques (LA-MA-06), Faculté des Sciences de Monastir, Avenue de Environnement 5000 Monastir, Tunisia

  • Laboratoire de Microélectronique et Instrumentation (UR 03/13-04), Faculté des Sciences de Monastir, Avenue de l'Environnement 5000 Monastir, Tunisia

  • Institut de Nanotechnologie de Lyon (INL) ??site INSA??, INSA de Lyon, Bat. Blaise Pascal, 7 Avenue Jean capelle, 69621 Villeurbanne (cedex), France

  • Sections