Please enter verification code
Confirm
An Elementary Proof of a Result Ma and Chen
American Journal of Mathematical and Computer Modelling
Volume 5, Issue 2, June 2020, Pages: 43-46
Received: Jan. 15, 2020; Accepted: Feb. 11, 2020; Published: Apr. 23, 2020
Views 408      Downloads 88
Authors
Qing Han, School of Information Science and Technology, South China Business College of Guangdong University of Foreign Studies, Guangzhou, China
Pingzhi Yuan, School of Mathematics, South China Normal University, Guangzhou, China
Article Tools
Follow on us
Abstract
In 1956, Je_smanowicz conjectured that, for positive integers m and n with m > n; gcd(m; n) = 1 and mn (mod 2), the exponential Diophantine equation (m2 -n2)x + (2mn)y = (m2 + n2)z has only the positive integer solution (x; y; z) = (2; 2; 2). Recently, Ma and Chen proved the conjecture if 4 mn and y ≥ 2. In this paper, we provide a proposition that, for positive integers m and n with m > n; gcd(m; n) = 1 and m2 + n2 ≡ 5 (mod 8), the exponential Diophantine equation (m2 -n2)x + (2mn)y = (m2 + n2)z has only the positive integer solution x = y = z = 2 with 2j gcd(x; y). Then we present an elementary and simple proof of the result of Ma and Chen by using Jacobi’s symbols.
Keywords
Pythagorean Triple, Jesmanowicz Conjecture, Exponential Diophantine Equations
To cite this article
Qing Han, Pingzhi Yuan, An Elementary Proof of a Result Ma and Chen, American Journal of Mathematical and Computer Modelling. Vol. 5, No. 2, 2020, pp. 43-46. doi: 10.11648/j.ajmcm.20200502.12
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Z. Cao, A note on the Diophantine equation ax+by = cz, Acta Arith. 91 (1999) 85-93.
[2]
M. Deng, D. Huang, A note on Je_smanowicz’ conjecture concerning primitive Pythagorean triples. Bull. Aust. Math. Soc. 95 (2017) 5-13.
[3]
M. Deng, J. Guo, A note on Je_smanowicz’ conjecture concerning primitive Pythagorean triples. II. Acta Math. Hungar. 153 (2017) 436-448.
[4]
M. Deng and G. L. Cohen, On the conjecture of Je´smanowicz concerning Pythagorean triples, Bull. Aust. Math. Soc. 57 (1998) 515-524.
[5]
Y. Fujita and T. Miyazaki, Je_smanowicz’ conjecture with congruence relations, Colloq. Math. 128 (2012) 211-222.
[6]
Y. Guo and M. Le, A note on Je_smanowicz’ conjecture concerning Pythagorean numbers, Comment. Mat., Univ. St. Pauli 44 (1995) 225-228
[7]
Q. Han and P. Yuan, A note on Je_smanowicz’ conjecture, Acta Math Hungar. https://doi.org/10.1007/s10474-018- 0837-4.
[8]
L. Je_smanowicz, Several remarks on Pythagorean numbers. Wiadom. Mat. 1 (1955/56) 196-202.
[9]
M. Le, A note on Je_smanowicz’ conjecture concerning Pythagorean triples’, Bull. Aust. Math. Soc. 59 (1999), 477-480.
[10]
W. Lu, On the Pythagorean numbers 4n2 - 1; 4n and 4n2+1, Acta Sci. Natur. Univ. Szechuan 2 (1959) 39-42.
[11]
Ma, Mi-Mi; Chen, Yong-Gao Je_smanowicz’ conjecture on Pythagorean triples. Bull. Aust. Math. Soc. 96 (2017) 30-35.
[12]
T. Miyazaki, On the conjecture of Jesmanowicz concerning Pythagorean triples, Bull. Aust. Math. Soc. 80 (2009), 413C422.
[13]
T. Miyazaki, Je_smanowicz’ conjecture on exponential Diophantine equations, Funct. Approximatio Comment Math. 45 (2011) 207-229.
[14]
T. Miyazaki, Generalizations of classical results on Je_smanowicz’ conjecture concerning Pythagorean triples, J. Number Theory 133 (2013) 583-595 .
[15]
T. Miyazaki, A remark on Je_smanowicz’ conjecture for the non-coprimality case, Acta Math. Sin. (Engl. Ser.) 31 (2015) 1255-1260.
[16]
T. Miyazaki, Contributions to some conjectures on a ternary exponential Diophantine equations, Acta Arith. (to appear).
[17]
T. Miyazaki and N. Terai, On Je_smanowicz’ conjecture concerning Pythagorean triples II, Acta Math. Hungar. 142 (2015) 286-293.
[18]
T. Miyazaki, P. Yuan, D. Wu, Generalizations of classical results on Je_smanowicz’ conjecture concerning Pythagorean triples II, J. Number Theory, 141 (2014) 184-201.
[19]
L. J. Mordell, Diophantine equations, London: Academic Press, 1969.
[20]
K. Takakuwa, A remark on Je_smanowicz’ conjecture, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996) 109- 110.
[21]
M. Tang, Z. Yang, Je_smanowicz’ conjecture revisited, Bull. Aust. Math. Soc. 88 (2013) 486-491.
[22]
N. Terai, Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations, Acta Arith. 90 (1999) 17-35.
[23]
N. Terai, On Je_emanowicz’ conjecture concerning primitive Pythagorean triples, J. Number Theory 141 (2014) 316-323.
[24]
P. Yuan and Q. Han, Je_smanowicz’ conjecture and related equations, Acta Arith. 184 (2018), 37-49.
[25]
X. Zhang, W. Zhang, The exponential Diophantine equation ((22m - 1)n)x + (2m+1n)y = ((22m + 1)n)z, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 57 (2014) 337-344.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186