| Peer-Reviewed

Surface Chemical Studies on Silicon Carbide Suspensions in the Presence of Poly (Ethylene Glycol) and Chitosan

Received: 5 November 2016    Accepted: 30 December 2016    Published: 23 January 2017
Views:       Downloads:
Abstract

The changes in the surface chemical properties of SiC suspensions consequent to the addition of polyethylene glycol (PEG) and chitosan, both individually and in the presence of each other were studied. The adsorption densities of PEG and chitosan for SiCwere found to be higher at pH 2-3 and 7-7.5 respectively. The adsorption behaviour in the combined presence of PEG and chitosan was akin to those observed for the individual systems. The isoelectric point (i.e.p.) of SiC was found to be located at pH 3. The addition of chitosan shifted the i.e.p. towards more alkaline pH values, in proportion with the concentration of chitosan added, with a concomitant change in the zeta potentials to less electronegative or more electropositive values. On the contrary, only a marginal change in the electrokineticbehaviour of SiC suspension was found after PEG addition. The favourable pH regimes were established to be 2-6 and 9-11, for the enhanced stability of SiC suspension with the optimum dosage of chitosan. The electrokinetic and dispersion characteristics of the SiC-chitosan system were only slightly altered by the addition of PEG. FTIR spectral investigations provided evidence in support of the proposed hydrogen bonding forces of interaction between SiC and PEG or chitosan.

Published in Colloid and Surface Science (Volume 2, Issue 1)
DOI 10.11648/j.css.20170201.12
Page(s) 6-20
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Silicon Carbide, Chitosan, Poly (Ethylene Glycol), Adsorption, Electrokinetics, Dispersion

References
[1] J. A. Lewis, J. Am. Ceram. Soc. 83 (10) (2000) 2341.
[2] W. M. Sigmund, N. S. Bell, L. Bergstrom, J. Am. Ceram. Soc. 83 (7) (2000) 1557.
[3] R. G. Horn, J. Am. Ceram. Soc. 73 (5) (1990) 1117.
[4] D. H. Napper, Polymeric stabilization of colloidal dispersions, Academic Press, London, 1983.
[5] R. Moreno, Amer. Ceram. Soc. Bull. 71 (10) (1992) 1521.
[6] R. Moreno, Amer. Ceram. Soc. Bull. 71 (11) (1992) 1647.
[7] J. Cesarano III, I. A. Aksay, J. Am. Ceram. Soc. 71 (12) (1988) 1062.
[8] F. Shojai, A. B. A. Pettersson, T. Mantyla, J. B. Rosenholm, J. Eur. Ceram. Soc. 20 (2000) 277.
[9] M. C. B. Lopez, B. Rand, F. L. Riley, J. Eur. Ceram. Soc. 20 (2000)1579.
[10] D. Liu, S. G. Malghan, Colloids Surf. A 110 (1996) 37.
[11] Y. Hirata, S. Tabata, J. Ideue, J. Am. Ceram. Soc. 86 (1) (2003) 5.
[12] D. Hotza, P. Greil, Mater. Sci. Eng. A202 (1995) 206.
[13] E. P. Hyatt, Am. Ceram. Soc. Bull. 68 (4) (1986) 637.
[14] R. H. R. Castro, D. Gouvea, J. Eur. Ceram. Soc. 23 (6) (2003) 897.
[15] K. Niihara, J. Ceram. Soc. Jpn. 99 (10) (1991) 974.
[16] R. N. Katz, in: J. B. Wachtman Jr. (Ed.), Structural ceramics, Treatise on Materials Science and Technology, Academic Press, Inc., New York, 1989, vol. 29, 1.
[17] T. Sakka, D. D. Bidinger, I. A. Aksay, J. Am. Ceram. Soc. 78 (2) (1995) 479.
[18] K. Komeya, M. Matsui, in: M. V. Swain (Ed.), Materials Science and Technology, A Comprehensive Treatment, VCH Publishers Inc., New York, USA, 1994, vol.11, 517.
[19] S. P. Lau, J. M. Marshall, T. E. Dyer, Phil. Mag. B. 72 (3) (1995) 323.
[20] M. I. Nieto, R. Moreno, A. Salomoni, I. Stamenkovic, Am. Ceram. Soc. Bull. 77 (11) (1998)
[21] W. J. Walker, Jr., J. S. Reed, S. K. Verma, W. E. Zirk, J. Am. Ceram. Soc.82 (3) (1999) 585.
[22] U. Paik, V. A. Hackley, H. Lee, J. Am. Ceram. Soc. 82 (4) (1999) 833.
[23] A. U. Khan, B. J. Briscoe, P. F. Luckham, Colloids Surf. A: Physicochem. Eng. Aspects 161 (2000) 243.
[24] A. W. M. de Laat, G. L. T. van den Heuvel, Colloids Surf. A: Physicochem. Eng. Aspects 70 (1993) 179.
[25] D. Santhiya, S. Subramanian, K. A. Natarajan, S. G. Malghan, J. Colloid Interface Sci. 216 (1) (1999) 143.
[26] K. Esumi, Y. Nakaie, K. Sakai, K. Torigoe, Colloids Surf. A: Physicochem. Eng. Aspects 194 (2001) 7.
[27] M. Rinaudo, M. Milas, L. P. Dung, Int. J. Biol. Macromol. 15 (1993) 281.
[28] A. B. V. Kumar, L. R. Gowda, R. N. Tharanathan, Eur. J. Biochem.271 (4) (2004) 713.
[29] K. C. Ingham, R. C. Ling, Anal. Biochem. 85 (1978) 139.
[30] R. A. A. Muzzarelli, Anal. Biochem. 260 (1998) 255.
[31] K. Heinz, U. Starke, J. Bernhardt, J. Schardt, Appl. Surf. Sci. 162 (2000) 9.
[32] M. N. Rahaman, L. C. De Jonghe, Ceram. Bull. 66 (5) (1987) 782.
[33] A. Tsuge, Y. Uwamino, T. Ishizuka, Appl. Spect. 40 (3) (1986) 310.
[34] R. Zhou, Y. Jiang, Y. Liang, F. Zheng, Y. Chen, Ceram. Int. 28 (2002) 847.
[35] J. Rubio, J. A. J. Kitchener, Colloid Interface Sci.57 (1) (1976) 132.
[36] S. Mathur, B. M. Moudgil, Min. Metall. Proc. 15 (2) (1998) 24.
[37] E. Koksal, R. Ramachandran, P. Somasundaran, C. Maltesh, Powder Tech. 62,(1990)253.
[38] G. J. Howard, P. McConnell, J. Phys. Chem. 71 (1967) 2974.
[39] R. K. Iler, The chemistry of Silica: solubility, polymerization, colloid and surface properties and biochemistry, John Wiley and Sons, Inc., New York, 1979.
[40] I. Rachas, Th. F. Tadros, P. Taylor, Colloids Surf. A: Physicochem. Eng. Aspects 161 (2000) 307.
[41] Th. F. Tadros, J. Colloid Interface Sci.64 (1) (1978) 36.
[42] P. M. Claesson, B. W. Ninham, Langmuir 8 (5) (1992) 1406.
[43] J. Sun, L. Gao, J. Eur. Ceram. Soc. 21(2001)24447.
[44] A. Dietrich, A. Neubrand, J. Am. Ceram. Soc. 84 (4) (2001) 806.
[45] J. Iskra, Ceram. Int. 23 (1997) 337.
[46] G. M. Lindquist, R. A. Stratton, J. Colloid Interface Sci. 55 (1) (1976) 45.
[47] A. Domard, M. Rinaudo, C. Terrassin, J. Appl. Pol. Sci. 38 (1989) 1799.
[48] W. H. Jiang, S. J. Han, Eur. Polym. J., 35 (1999) 2079.
[49] E. F. Voronin, V. M. Gun’ko, N. V. Guzenko, E. M. Pakhlov, L. V. Nosach, R. Leboda, J. Skubiszewska-Zieba, M. L. Malysheva, M. V. Borysenko, A. A. Chuiko, J. Colloid Interface Sci.279 (2) (2004) 326.
[50] S. Baklouti, C. Pagnoux, T. Chartier, J. F. Baumard, J. Eur. Ceram. Soc. 17 (1997) 1387.
[51] R. R. Rao, H. N. Roopa, T. S. Kannan, Ceram. Int. 25 (1999) 223.
[52] P. Tartaj, M. Reece, J. S. Moya, J. Am. Ceram. Soc. 81 (2) (1998) 389.
[53] R. J. Pugh, L. Bergstrom, J. Colloid Interface Sci. 124 (2) (1988) 570.
[54] S. Wang, W. J. Wei, J. Am. Ceram. Soc. 84 (7) (2001) 1411.
[55] F. Li, H. Chen, R. Wu, B. Sun, Mat. Sci. Eng. A. 368 (2004) 255.
[56] T. Sato, S. Kohnosu, Colloids surf A: Physicochem. Eng. Aspects 88 (1994) 197.
[57] R. I. Feigen, D. H. Napper, J. Colloid Interface Sci. 74 (1980) 567.
[58] J. M. H. M. Scheutjens, G. J. Fleer, Adv. Colloid Interface Sci. 16 (1982) 361.
[59] V. A. Hackley, J. Am. Ceram. Soc. 80 (9) (1997) 2315.
[60] R. A. Nyquist, C. L. Putzig, A. M. Lengers, Hand book of infrared and raman spectra of inorganic compounds and organic salts (4-volume set), Academic press, London, UK, 1997.
[61] G. Socrates, Infrared Characteristic Group Frequencies, Wiley Interscience, NewYork, 1980.
[62] J. Brugnerotto, J. Lizardi, F. M. Goycoolea, M. W. Argiielles, J. Desbrieres, M. Rinaudo, Polymer 42 (2001) 3569.
[63] B. Smith, Infrared spectral interpretation, A systematic approach, CRC Press, Florida, 1999.
[64] Q. Liu, Y. Zhang, J. S. Laskowski, Int. J. Miner. Process. 60 (2000) 229.
[65] M. J. Crimp, R. E. Johnson Jr, J. W. Halloan, D. L. Feke, in: L. L. Hench, D. R. Ulrich (Eds.), Science of ceramic chemical processing, Wiley, New York, 1986.
[66] P. Schuster, G. Zundel, C. Sandorfy, The Hydrogen Bond, Recent developments in theory and experiments, Vol. III. Dynamics, thermodynamics and special systems. North-Holland Publishing Company, Amsterdam, 1976.
Cite This Article
  • APA Style

    Saravanan Loganathan, Subramanian Sankaran. (2017). Surface Chemical Studies on Silicon Carbide Suspensions in the Presence of Poly (Ethylene Glycol) and Chitosan. Colloid and Surface Science, 2(1), 6-20. https://doi.org/10.11648/j.css.20170201.12

    Copy | Download

    ACS Style

    Saravanan Loganathan; Subramanian Sankaran. Surface Chemical Studies on Silicon Carbide Suspensions in the Presence of Poly (Ethylene Glycol) and Chitosan. Colloid Surf. Sci. 2017, 2(1), 6-20. doi: 10.11648/j.css.20170201.12

    Copy | Download

    AMA Style

    Saravanan Loganathan, Subramanian Sankaran. Surface Chemical Studies on Silicon Carbide Suspensions in the Presence of Poly (Ethylene Glycol) and Chitosan. Colloid Surf Sci. 2017;2(1):6-20. doi: 10.11648/j.css.20170201.12

    Copy | Download

  • @article{10.11648/j.css.20170201.12,
      author = {Saravanan Loganathan and Subramanian Sankaran},
      title = {Surface Chemical Studies on Silicon Carbide Suspensions in the Presence of Poly (Ethylene Glycol) and Chitosan},
      journal = {Colloid and Surface Science},
      volume = {2},
      number = {1},
      pages = {6-20},
      doi = {10.11648/j.css.20170201.12},
      url = {https://doi.org/10.11648/j.css.20170201.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.css.20170201.12},
      abstract = {The changes in the surface chemical properties of SiC suspensions consequent to the addition of polyethylene glycol (PEG) and chitosan, both individually and in the presence of each other were studied. The adsorption densities of PEG and chitosan for SiCwere found to be higher at pH 2-3 and 7-7.5 respectively. The adsorption behaviour in the combined presence of PEG and chitosan was akin to those observed for the individual systems. The isoelectric point (i.e.p.) of SiC was found to be located at pH 3. The addition of chitosan shifted the i.e.p. towards more alkaline pH values, in proportion with the concentration of chitosan added, with a concomitant change in the zeta potentials to less electronegative or more electropositive values. On the contrary, only a marginal change in the electrokineticbehaviour of SiC suspension was found after PEG addition. The favourable pH regimes were established to be 2-6 and 9-11, for the enhanced stability of SiC suspension with the optimum dosage of chitosan. The electrokinetic and dispersion characteristics of the SiC-chitosan system were only slightly altered by the addition of PEG. FTIR spectral investigations provided evidence in support of the proposed hydrogen bonding forces of interaction between SiC and PEG or chitosan.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Surface Chemical Studies on Silicon Carbide Suspensions in the Presence of Poly (Ethylene Glycol) and Chitosan
    AU  - Saravanan Loganathan
    AU  - Subramanian Sankaran
    Y1  - 2017/01/23
    PY  - 2017
    N1  - https://doi.org/10.11648/j.css.20170201.12
    DO  - 10.11648/j.css.20170201.12
    T2  - Colloid and Surface Science
    JF  - Colloid and Surface Science
    JO  - Colloid and Surface Science
    SP  - 6
    EP  - 20
    PB  - Science Publishing Group
    SN  - 2578-9236
    UR  - https://doi.org/10.11648/j.css.20170201.12
    AB  - The changes in the surface chemical properties of SiC suspensions consequent to the addition of polyethylene glycol (PEG) and chitosan, both individually and in the presence of each other were studied. The adsorption densities of PEG and chitosan for SiCwere found to be higher at pH 2-3 and 7-7.5 respectively. The adsorption behaviour in the combined presence of PEG and chitosan was akin to those observed for the individual systems. The isoelectric point (i.e.p.) of SiC was found to be located at pH 3. The addition of chitosan shifted the i.e.p. towards more alkaline pH values, in proportion with the concentration of chitosan added, with a concomitant change in the zeta potentials to less electronegative or more electropositive values. On the contrary, only a marginal change in the electrokineticbehaviour of SiC suspension was found after PEG addition. The favourable pH regimes were established to be 2-6 and 9-11, for the enhanced stability of SiC suspension with the optimum dosage of chitosan. The electrokinetic and dispersion characteristics of the SiC-chitosan system were only slightly altered by the addition of PEG. FTIR spectral investigations provided evidence in support of the proposed hydrogen bonding forces of interaction between SiC and PEG or chitosan.
    VL  - 2
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Materials Engineering, Indian Institute of Science, Bangalore, India

  • Department of Materials Engineering, Indian Institute of Science, Bangalore, India

  • Sections